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ABSTRACT

As COVID-19 continues to spread around the globe, it is critical to understand the

true burden of a future outbreak in developing countries like Colombia where data

may be limited. Here, we estimated the rate of the initial exponential growth of

cases and the basic reproductive rate for the disease. We use models with di�erent

modeling assumptions to study the di�erences between �ve major Colombian cities

and between selected Latin American countries. Using an ensemble modeling tech-

nique, we estimated that the reproduction number in Colombia varied from 1.10 in

Cartagena to 1.75 in Medellin with Cali being 1.47. In Latin America, Ecuador has

highest initial epidemic growth rate and Panama the lowest with Colombia in middle

of the list. The choice of appropriate model and parameter estimates for a location

provided di�erent scenarios in outbreaks. This analysis provides a framework for the

decision makers to be better prepared for an outbreak.
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1 Introduction

An outbreak of pneumonia with unknown etiology in the Wuhan city, Hubei’s province in Mainland China was first reported
on December 31, 2019 by the World Health Organization (WHO). On January 7, 2020 a virus associated with this outbreak was
isolated (Minwang et al., 2020) and found to be novel strain of Coronavirus that may have crossed over to human population
from its sylvatic host. On January 30, 2020, WHO declared the Public Health emergency of International importance (OMS,
2020) and denominated this coronavirus as SARS-COV-2 while the disease was referred as COVID-19 on February 12, 2020
(Figueroa, 2020). This virus belongs to the genus betacoronavirus of the subfamily coronavirus and family Coronaviridae.
The 2002–2004 SARS epidemic and the 2012–2016 MERS epidemic were also caused by the viruses belonging to the family
coronavirus; however, both showed lower transmissibility and absolute lethality (Chen, 2020).

In order to protect people from this unknown outbreak of COVID-19 it is critical to understand its trends and estimate po-
tential burden. Mathematical models have been used before to this purpose for various epidemic diseases and can be extremely
helpful in disease preparedness. An important threshold quantity associated with a disease transmissibility is the basic repro-
duction number, denoted byR0 (pronounced “R naught”). The epidemiological definition ofR0 is the average number of new
cases of the disease that will be generated by one contagious person during his/her infectious period. It specifically applies to a
population of people who were previously free of infection and not vaccinated. Three possibilities exist for the potential spread
or decline of a disease, depending on its R0 value: (i) If R0 is less than 1, each existing infection causes less than 1 new infection.
In this case, the disease will decline and eventually disappear. (ii) If R0 equals 1, the disease will stay alive, but there won’t be
an epidemic. (iii) If R0 is greater than 1, cases could grow exponentially and cause an epidemic or even a pandemic (Brauer and
Castillo-Chavez, 2012) . A preliminary R0 estimate of 1.4–2.5 was presented on Jan 23, 2020 in a WHO statement regarding
the outbreak of 2019-nCoV (Minwang et al., 2020). Zhao et al. (2020) estimated the meanR0 for 2019-nCoV in the early phase
of the outbreak ranging from 3.3 to 5.5 (likely to be below 5 but above 3 with rising report rate) (Zhao et al., 2020; Chaolin
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et al., 2020), which appeared slightly higher than those of SARS-CoV (R0:2-5) (Chen, 2020). Read et al. (2020) estimated the
R0 for 2019-nCoV to be in the range 3.6–4.0, indicating that 72–75% of transmissions must be prevented in order to stop the
increasing trend. The explosive and dramatic behavior of the spread of this virus SARS-CoV-2 in mainland China, has forced
health and administrative authorities take severe and strict control measures. Until January 31, 2020, 11,950 cases had been
reported and 259 deaths but the number of cases had increased to 75,184 and 2009 deaths on February 18, 2020 (COVID-19,
2020). The pharmacological treatment with antivirals is unknown and the vaccine is in the early stages of investigation.

The major cities of Colombia are Cali, Bogota, Barranquilla, Cartagena, and Medellin with population size 2.5M, 7.2M,
1.2M, 0.9M, and 2.6M, respectively. Climatic conditions remains almost similar between cities but socio-economic character-
istics varies tremendously between them. In these cities, more than 98% of population lives in urban areas (Escobar and Perilla,
2019), with an average temperature of about 24°C, an annual precipitation of more than 1,000 mm. The weather in these cities
has two seasons including a dry season (from December to January and July to August) and a cloudy season (from April to
May and October to November). Some strains of Coronavirus may be related to climatic conditions with colder weather more
suitable for their spread. Many of these cities are touristic city and the number of passengers moved by international routes in
Colombia (Aeronáutica, 2020) reached more than 11M people alone in the first half-year. COVID-19 surveillance data is con-
sidered weak in many areas of Colombia. There are various intervention programs to control COVID-19 outbreaks are in place
in Colombia. However, there remains significant challenges such limited resources available for Colombia’s surveillance system
and the national laboratory network. Moreover, public health educational programs to make public aware of self-protection
measures need to be strengthen in order to quickly mitigate the impact of the disease. Between the factors (Oaks et al., 1992)
explain the emergence or re-emergence of infectious diseases the modern aeronautical technology allows the connection between
countries in very short time and thus sick people carry infectious agents over long distances (Anaya, 2017). This information
will allow prepare plans of education to community that interrupts the transmission of the virus. Coronavirus has been in
Latin America since February of 2020. Since then countries across the region have implemented various social distancing and
lockdown policies to control the COVID-19 pandemic, with varied success.

The objectives of this study are to (i) use available current COVID-19 information and estimate via showcasing ensemble
modeling technique, for Colombia, the disease burden under different modeling assumptions, and (ii) compare situation in five
major cities of Colombia, and (iii) compare the situation in Colombia with other similar Latin American countries.

2 Materials and Methods

We considered different modeling assumptions to capture COVID-19 outbreak in five major cities of Colombia and selected
Latin American countries. In order to understand the ongoing burden of the disease, a systematic procedure was implemented.
The procedure in this study primarily involves four steps: (i) Using reported estimates of R0 and model-derived formulation
of R0 (corresponding to different model and under the assumption of initial exponential growth rate of epidemic), estimate
effective transmission rate in the population, (ii) Use estimated effective transmission rate, demographic data from cities of
Colombia and epidemic models, to predict different outbreak scenarios for cities, and (iii) From these outbreak scenarios (in
step (ii)), estimate the disease burden.

2.1 Basic modeling framework

Mathematical model to capture a potential outbreak. For the mathematical modeling of the transmission dynamics
of the new SARS-CoV-2 coronavirus, we have established the structure compartmental of SEIR model (Susceptible, Exposed,
Infectious, Recovered) and applying the method of differential equations based on the COVID-19 epidemic data in continental
China (Li et al., 2020; Vynnycky and White, 2010).

dS (t)
dt

= −λ(t)S (t)

dE(t)
dt

= λ(t)S (t) − fE(t)

dS (t)
dt

= fE(t) − rI (t)

dS (t)
dt

= rI (t)

(1)

Model variables and parameters are defined in Table 1. The rest of the models are defined in Table 3 and in the Supplementary
Material, section B.
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Table 1: Variables and parameters of the SEIR model.

Symbol Definition

Variables

S Susceptible population
E Exposed (pre-infectious) population
I Infectious population
R Recovered population

Parameters
λ Rate at which susceptible individuals becoming infected per unit time, at time t
f Rate at which individuals in the pre-infectious category become infectious per unit time
r Rate at which infectious individuals recover per unit time

Model-related metrics. Consider a simple epidemic model, Susceptible-Infectious-Recovered (SIR) or Susceptible-
Exposed-Infectious-Recovered (SEIR) model with I individuals are only infectious. The number of susceptible individuals
who are infected per unit time is given by the product of the force of infection, λ(t), and the number of susceptible individuals
at time t (i.e., λ(t) (t)S (t)) under the assumption that individuals contact each other randomly. Let λ(t) be the force of infection
or rate at which a susceptible individual is infected or rate at which they move to an infected compartment then it can be written
as

λ(t) = βI (t) (2)

where β is the rate at which two specific individuals come into effective contact per unit time and I (t) is the number of infectious
individuals at time t. The formula for basic reproduction number of the model isR0 = βND and can used it to estimate effective
contact rate as

β =
R0

ND
(3)

where N is the population size at the beginning of an outbreak and D is the length of the infectious period.
Now if Exposed state (defined as individuals who are infected not infectious) is present in the model then the model will

be referred as SEIR model. Suppose f is the rate at which the individuals move from exposed compartment to infectious com-
partment. The rate f = 1/D′, where D′ is the duration of the latent or pre infectious period. Let r be the rate at which the
individuals move from infectious compartment to recovered or immune compartment, i.e., r = 1/D, where D is the duration
of the infectious period.

Since R0 is a metric computed early in the epidemic, it can be used to relate it with the initial growth rate of an epidemic.
Different formulae are used to estimate R0 using data from the early stages of an epidemic, each of them requires estimates of
something which is often referred to as exponential growth of rate of the epidemic sometimes denoted by Λ (capital lambda).
During the early stages of an epidemic, the number of infectious individuals increases at an approximately constant exponential
growth rate.

2.2 Estimation of various relevant quantities

Initial exponential growth rate. We can estimate this growth rate as follows. Consider an exponential growing function
of number of reported cases I (t) where Λ is the exponential growth rate parameter, i.e.,

I (t) = I (0)eΛt (4)

where I (0) is the initial number of infectious individuals at the beginning of infection. If we take natural logarithm of this
equation, we obtain the following equation:

ln (I (t)) = ln (I (0)) + Λt (5)

relating the number of infectious individuals and Λ. Note, this is the equation of a straight line with slope Λ, suggesting that if
we plot the natural logarithm of the number of infectious individuals against time, we should obtain a straight line with slopeΛ.

On the other hand, we can also write an expression of R0, in terms of Λ. This expression of R0 will depend on the type of
model considered and other model parameters including D′ and D the average durations of the pre-infectious and infectious
periods respectively. Sometimes R0 can also be expressed in terms of the serial interval, Ts (defined as the time between the start
of symptoms in the primary patient (infector) and onset of symptoms in the patient receiving that infection from the infector
(the infected) (Chaolin et al., 2020). In Table 3 the different formulas are shown. For example, in case of the SEIR model with
only I infectious, the basic reproduction number can be written as

R0 = (1 + ΛD) (1 + ΛD′) (6)
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and in case of the SIR model, R0 = 1 + ΛD.
Furthermore, we can use equation (5) to obtain the relationship between the growth rate Λ and the doubling time Td of an

epidemic, which is defined as the time until the number of cases in the population doubles, relative to that at some other time.
Suppose that there is only one infectious individual at time t = 0 (i.e., I (0) = 1) and there are two infectious individuals at time
t = Td (i.e., I (Td) = 2). Substituting for I (0) = 1 and I (Td) = 2 into equation (5) we obtain ln 2 = ln 1 + ΛTd which implies

Λ =
ln 2
Td

(7)

Since R0 can be written in the form of Λ and the doubling time can be computed as in equation (7), we can find Td in terms of
R0. For example, in case of SIR model,

Td =
(ln 2) · D
R0 − 1

(8)

and in case of SEIR model with only I infectious, it can be written as

Td =
ln 2
Λ̃

(9)

where Λ̃ =
(
−D1 +

√︃
D2

1 + 4(R0 − 1)D2

)
/
(
2D2

)
, D1 = D +D′, and D2 = D · D′. This formula can be used to study the role

of epidemiological factors such as transmission rate (β), asymptomatic and symptomatic periods.

Estimation of model parameters. In groups of Japanese migrants who were repatriated, the proportion of positive
asymptomatics to PCR test, was estimated by Nishiura et al. (2020) in 41.6% (CI 95%: 16.7–66.7); Kimball et al. (2020) found
57%; and Mizumoto et al. (2020) 51.7%. For purpose of our study we will take 50% as parameter value (Chen et al., 2020).
It has also been established that 14% of the symptomatic people are hospitalized for complications related to pneumonia and
respiratory distress (CDC, 2020; Wu and McGoogan, 2020). From those hospitalized, 15% die (Huang et al., 2020; MSE,
2020; Wang et al., 2020). Because COVID-19 is a novel disease, some parameters are unknown or are known with less precision,
and hence, they are estimated. Using case reports, outbreaks’ studies and some based on the behavior of coronavirus in past
epidemics, these parameters are estimated. Multiple research articles report incubation period estimates obtained from different
methods. The most of them report incubation period mean between 5–7 days and the range between 2–14 days (González-
Jaramillo et al., 2020; Liu et al., 2020; Imai et al., 2020; Backer et al., 2020; Ganyani et al., 2020; Guan et al., 2020; Adhikari
et al., 2020; Zheng, 2020; Lauer et al., 2020). We have used the incubation period to be 6.4 days based on most of the studies.
Although the virus SARS-2 can be detected in nasopharyngeal swab between 2.5 days before and 18 days after starting symptoms,
infectivity is considered very low after 7 days. The infectious period is assumed for this study, an average of 7.6 days based on
reported 14 days quarantine period COVID-19 (Hu et al., 2020; Murcia, 2020; Ministerio, 2020; Tan et al., 2020; He et al.,
2020).

Estimation of R0. The data used for calculating R0 were collected from published research (for example, (Li et al., 2020)).
The novel coronavirus SARS-CoV-2, causes COVID-19, which is characterized mainly by fever, muscle pain and cough and it
can move along to severe phases of pneumonia or even die. Because it is a new disease, there is a small knowledge about the time
of latent period, infectious period in the natural history of disease, though some estimates have been made based on cluster of
cases and hospitalized.

2.3 Models

In this study, we consider various modeling assumptions leading to six different models defined in Table 2, Table 3 and their
details are given in Supplementary Material. An additional (seventh) model, referred to as Age of Infection model (details of
which are given in Supplementary Material Section C), is not used in the main text for estimation of parameters for COVID-19
in Colombia, but some mathematical details are mentioned in Supplementary Material for future application. Suppose S, E, I ,
R, T , J , Q1, Q2 and Q3 represent Susceptible, Exposed, Infectious, Recovered, Treated, Hospitalized, Susceptible-Quarantined,
Exposed-Quarantined and Infectious-Isolated (Table 2). The models are

Model I: simple SIR,
Model II: simple SEIR with I only infectious,
Model III: simple SEIR with E and I infectious,
Model IV: SITR,
Model V: SEIR-Q1Q2Q3,
Model VI: SEIJR.
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Table 2: Definition of state variables in the six models and corresponding models in which they are used.

Symbol Definition Model #
S Susceptible I–VI
E Exposed II, III, V, VI
I Infectious I–VI
R Recovered I–VI
T Treated IV
J Hospitalized VI
Q1 Susceptible-Quarantined V
Q2 Exposed-Quarantined V
Q3 Infectious-Isolated V

3 Ensemble Forecast

Ensemble forecasting, a primary method in climate modeling, is used to improve predictions of disease burden for relatively
longer time. It is also helpful in providing range of potential outcomes and requires large amount of data for parameterization
and validation. For example, predictions and projections of weather and climate from time scales of days to decades are consid-
ered using simulations of models that captures uncertainties in the initial condition, boundary condition, model parameters and
model structural uncertainties. In climate modeling, initial condition uncertainty is most relevant for the shortest time scales;
whereas, long-term projections of climate often require averaging across several ensemble members. The focus of the ensem-
ble forecasting method is to improve performance of any one individual model or reduce the probability of choosing a single
poor model from a set. In the method, multiple models with independent projections are combined, resulting in one improved
model to guide decision-making. The multiple models can simply differ from each other in structure (i.e., models vary between
assumptions on epidemiology) or alternatively can use single structure of a model but take into account changes in its parameters
(including initial conditions) over its reasonable range of values to produce a set of different results. Once different results from
the models are created, the results are then averaged by using some weighting schemes, which could range from simple linear
combination to sophisticated non-linear averaging.

3.1 Model choices and assumptions

In general, because the true disease system is highly complex, it remains fundamentally impossible to describe all its processes
in an epidemic model. Hence, modelers often make choices in selecting relevant processes, which directly depend on the ques-
tion of interest. Uncertainty that is introduced by choices in the model design and not by changing parameter values, is called
as structural uncertainty. In this study, we give an example of how structural uncertainty is applied for the infectious disease
system such as tracking COVID-19 pandemic. There are different ways to combine models in a multi-models ensembles. Mod-
els weighted averages, where weights are determined by using the error relationship between model forecasts and observations,
perform better than simple averages. In the present study, we assess the potential for uncertainties about SARS-CoV-2 virus
that impact forecasts of the disease spread. In order to achieve our goals, we evaluated the performance of six simple forecasting
models in the context of the COVID-19 pandemic in cites of Colombia. Each of the models have different features representing
a different combination of assumptions about epidemiology of pathogen, variation in transmission potential, and stages of in-
fection. The outcomes of the study include identification of the model assumptions that had the most ensemble weight changed
through time, evaluation of a trade-off when some individual models outperformed ensemble models early in the epidemic, but
on average the ensembles outperformed all individual models, and stresses that multiple models capturing uncertainty across
alternative assumptions are necessary to obtain robust forecasts for diseases such as COVID-19 in a developing country like
Colombia where there may substantial delay in data reporting and data might be incomplete in some instances.

3.2 Types of weighting scheme

The first type of averaging in the multi-model ensemble includes weighting all members by equal weight. In this case, averaging
is referred to as a “model democracy" (models in the ensemble are independent and equally plausible). The second type assumes
independent members but some have higher weights than others. In this weights are defined using formula exp(−Di/σ2D), where
Di represents the RMSE distance between a multi-model ensemble member and observations, and σ2D determines how far apart
a member and observations must be to be down-weighted. There are different ways in which weights can be computed.
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Table 4: Category of analysis based on model assumptions.

Models with no interventions Models with treatment Models with prevention
SIR (Model I) SITR (Model IV) SEIR-Q1Q2Q3 (Model V)
SIER with I infectious (Model II) SEIR-Q1Q2Q3 (Model V) SEIJR (Model VI)
SEIR with E&I infectious (Model III) SEIJR (Model VI)

Figure 1: Steps in ensemble method.
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Table 5: Parameter estimates of the six models.

Parameter Description Value and units References

Model I: SIR model

β1 Transmission rate 6.47 × 10−9 day−1 Estimated
α Infectious period (14 days) 0.0714 day−1 Chaolin et al., 2020; Kimball et al., 2020

Model II: SEIR model

β2 Transmission rate 1.79 × 10−8 day−1 Estimated
κ Pre-infectious period (5.2 days) 0.1923 day−1 Li et al., 2020
α Symptomatic infectious period (7 days) 0.143 day−1 Chaolin et al., 2020; Kimball et al., 2020

Model III: SEIR model with infectivity in exposed stage

β3 Transmission rate 3.5 × 10−10 day−1 Brauer and Castillo-Chavez, 2012; Li et al., 2020
κ Asymptomatic latent period (5.2 days) 0.1923 day−1 Li et al., 2020
ε Relative transmissibility reduction of E 0.5 day−1 Chaolin et al., 2020
α Symptomatic infectious period (7 days) 0.143 day−1 Chaolin et al., 2020; Kimball et al., 2020

Model IV: SIR model with treatment

β4 Transmission rate 1.06 × 10−8 day−1 Estimated
ρ Reduce infectivity of T class individuals 0.3 day−1 Orellana et al., 2020
σ Per capita isolation rate at symptomatics 0.1639 day−1 Kucharski et al., 2020
α1 Recovery rate 0.1809 day−1 Kucharski et al., 2020; Liu et al., 2020
α2 Recovery rate among treated 0.1061 day−1 Ivorra et al., 2020

Model V: SEIR model with quarantine and isolation

β5 Transmission rate 0.79 Estimated
ϕ Per capita quarantine rate 0.20 day−1 Mubayi et al., 2010
1/θ Average time in quarantine 6 (days) Mubayi et al., 2010

q Reduce infectivity of E class individual 0.5 Assumed (varied)
γ1 Per capita recovery rate of symptomatics 0.125 day−1 Wei et al., 2020
γ2 Per capita recovery rate among hospitalized 0.75 day−1 Wei et al., 2020

σ Per capita isolation rate of symptomatics 0.1639 day−1 Kucharski et al., 2020
α1 Per capita recovery rate of symptomatics 0.1809 day−1 Kucharski et al., 2020; Liu et al., 2020
α2 Recovery rate among treated 0.1061 day−1 Ivorra et al., 2020

Model VI: SEIR model with hospitalization and exposed infectiousness
β6 Transmission rate 2.83 × 10−7 day−1 Estimated
q̃ Reduce infectivity of E class individual 0.5 Assumed (varied)
l Reduced infectivity of J individual 0.4 Assumed (varied)

τ Pre-infectious period (assumed same as η) 0.85 day−1 Escobar and Perilla, 2019
µ Per capita recovery rate of asymptotics 0.2 day−1 Wei et al., 2020
η Recovery rate among treated 0.85 day−1 Escobar and Perilla, 2019

α1 Per capita recovery rate of symptomatics 0.1809 day−1 Kucharski et al., 2020; Liu et al., 2020
α2 Recovery rate in treated: the rate at which

the infectious are treated and cured
0.1061 day−1 Ivorra et al., 2020

σ Per capita isolation rate of symptomatics 0.1639 day−1 Kucharski et al., 2020
δ Per capita disease related mortality rate 0.025 day−1 Wei et al., 2020
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Table 6: Date of reporting starts and first exponential day.

Country
Date of

reporting
starts

Estimated date of first Case
(number of days of delay)

Initial reported
cases y(0) Λ R-squared

South Africa 03/09/2020 03/04/2020 (5 days) 4 0.3105 0.98
South Korea 02/19/2020 02/03/2020 (16 days) 86 0.2861 0.89
Ecuador 03/13/2020 03/01/2020 (12 days) 21 0.2618 0.86

Chile 03/10/2020 02/28/2020 (11 days) 14 0.2473 0.92
Brazil 03/10/2020 02/24/2020 (15 days) 36 0.2419 0.93
Mexico 03/11/2020 03/02/2020 (9 days) 8 0.2418 0.92

Colombia 03/09/2020 03/02/2020 (7 days) 5 0.2391 0.92

Peru 03/09/2020 02/28/2020 (10 days) 8 0.2231 0.89
Argentina 03/09/2020 03/28/2020 (10 days) 8 0.2158 0.96
Panama 03/11/2020 02/25/2020 (15 days) 18 0.2056 0.95

4 Results

We assume that the initial (at starting time) values of the state variables in the models are I0 = 1, S0 = N − I0 and other state
variables were taken as zero. The parameter estimates of the models were collected in Table 5, in Table 7, and in Supplementary
Material Tables B1–B6.

4.1 Initial exponential growth rate

Exponential growth model was used to estimate initial exponential growth rate in a city. The exponential function (Equation
(4) or (5)) is fitted to reported cases from different countries. For example, the early estimated growth rate using data from China
is found to around 0.17 (Figure A1, Supplementary Material) with the confidence interval given by 95% CI (0.162, 0.185). The
comparison of different exponential growth and estimated start of epidemics in some countries are computed and presented in
order in the Table 6 with Colombia having estimate of 0.23. We estimated that there was a delay of approximately 7 days in
the first reported case by Colombia. Among the 10 countries considered here, South Africa has the highest initial exponential
epidemic growth rate (0.3105) and Panama has the lowest (0.2056).

4.2 Computation of R0 and β estimates for Colombia and its �ve di�erent cities for six

di�erent models

We first computed the initial exponential growth rate (Λ) for each of the 5 major cities of Colombia. Using this Λ estimate, we
then computed R0 estimate (via formulas in Table 3), followed by corresponding βi estimates for all six models. The estimated
values are shown in Table 7.

4.3 Compare outbreaks in Colombia and its �ve di�erent cities for six di�erent models

We simulated all six models for whole Colombia and its five major cities. We computed for each model and region, the expected
number of cases that needs to be hospitalized over an outbreak, maximum daily number of cases that can be expected, time
needed to reach different epidemic peak and mean duration of an epidemic for the current outbreak. The simulated curve
was used to compute error between observed incidence and model-estimated incidence for each region. This error was referred
as “rss.”

4.4 Averaging results of six di�erent models for Colombia

The weighted average using the results from the six models was computed similar to climate models. We used AIC to estimate
this weight by

AIC = m ∗ log(rss) + 2K
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Table 7: Beta values and R0 for five Colombian cities and six different models. First day of outbreak considered as: 05/01/2020,
last day: 07/28/2020, except for Medellin which are First day: 06/01/2020, last day: 08/28/2020.

Cali Bogota Barranquilla Cartagena Medellin

Model I β1 4.57 × 10−8 1.53 × 10−8 9.36 × 10−8 9.39x10−8 4.78 × 10−8
R0 1.47 1.54 1.57 1.32 1.74

Model II β2 9.02 × 10−8 3.02 × 10−8 1.86 × 10−7 1.85 × 10−7 9.61 × 10−8
R0 1.45 1.52 1.56 1.29 1.75

Model III β3 3.74 × 10−9 1.76 × 10−8 7.42 × 10−9 8.16 × 10−9 3.61 × 10−9
R0 1.19 1.21 1.23 1.12 1.29

Model IV β4 1.22 × 10−7 3.97 × 10−8 2.41 × 10−7 2.66 × 10−7 1.17 × 10−7
R0 1.19 1.21 1.23 1.13 1.29

Model V β5 0.43 0.44 0.44 0.41 0.46
Rc 1.15 1.17 1.18 1.10 1.23

Model VI β6 0.13 0.14 0.14 0.12 0.16
Rc 1.19 1.24 1.27 1.06 1.41

where K is the number of parameters in the model, m is sample size of the data, and rss is the ratio of the residual sum of squares
= RSS/m where RSS is residual sum of squares. For small sample sizes (m/K < 40), use the second-order AIC:

AICc = m ∗ log(rss) + 2K + (2K (K + 1)/(m − K − 1))

Akaike weights (ωi) are the weight of evidence in favor of model i being the actual best model for the situation at hand given
that one of the n models must be the best model for that set of n models.

ωi =
exp{−0.5Δi}∑n
r=1 exp{−0.5Δr}

(10)

where Δi = AICi − AICmin. Note, Akaike weights for all models combined should add up to 1. Other studies have also used
weights as follows:

ωi =
msei∑n
r=1 mser

(11)

where msei = 1
MSEi and MSEi = 1

m
∑m

j=1 (fi (tj ,Θi) − ytj )2. Hence, the estimated mean incidence curve from the ensemble
model is

fens (t) =
6∑︁
i=1

ωi ∗ fi (tj ,Θi)

Before any weighting of results from all the models, we initially evaluated forecasting from each of the six models separately,
which show very high incidence across most cities over the about 2-year period of our analysis. It seems short-term forecasts over
a 2-week time horizon were consistent with the high observed incidence at that time. Over the first 12 weeks, model parameters
changed modestly and correlations among parameters began to emerge. Many of the models showed only one peak unlike the
observed time series where there were a few valley and peak. This may be due to choice of simple models in our set and long term
fitting using the same model.

Starting the first reported case in a region, we updated parameter estimates every week, and generated forecasts every four
weeks. The model-specific forecast was also quantified over time. The role of various model assumptions was incorporated into
how weights of ensemble for each forecasting period was computed (three types of assumptions were considered: models with
no interventions, models with treatment, and models with prevention). We summed and then normalized models’ ensemble
weights across each class of assumption. Table 8 provides parameters that were estimated in each of the six models.

The averaging of the ensemble models was based on AIC criteria (Table 9) and weights were computed as shown in Table 10.
The model with least AIC value or highest weight are shown as bolded text in the two tables. The final averaged model of
the ensemble of six models for each city is shown in the Figure 2 and Figure 3. According to the averaged ensemble model,
peak in outbreak occurred during Nov-30-2020 in Cali (9928 cases), Oct-31-2020 in Bogota (38328 cases), Nov-27-2020 in
Barranquilla (6918 cases), Mar-5-2021 in Cartagena (2106 cases; peak was not yet obtained in this forecast) and Oct-16-2020
in Medellin (21348 cases). This is based on the data from Mar-6-2020 to Oct-28-2020, considered in this study. The models
forecasted outcomes from Oct-29-2020 to Mar-5-2021. The forecast in the averaged ensemble model were much higher in
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Table 8: Parameters estimated in the respective models.

Model Parameters
I β1
II β2
III β3
IV β4 ρ
V β5 q
VI β6 q̃ l

Table 9: AIC values for the six models for each of the five cities.

Model Cali Bogota Barranquilla Cartagena Medellin
I 1403.29 1695.82 1343.04 1210.38 1160.87
II 1416.93 1701.09 1348.68 1209.35 1159.21
III 1580.99 1610.42 1326.81 1220.20 1193.68

IV 1503.95 1748.72 1388.94 1205.26 1178.03
V 1460.87 1709.07 1363.79 1203.05 1163.04
VI 2031.72 2211.06 1329.49 1223.07 1192.29

Table 10: The weights (ω) for corresponding models in the ensemble for each of the five cities.

Model Cali Bogota Barranquilla Cartagena Medellin
I 0.98 2.85 × 10−19 2.36 × 10−4 0.02 0.27
II 0.01 2.05 × 10−20 1.41 × 10−5 0.03 0.63
III 2.59 × 10−39 0.98 0.79 1.34 × 10−4 2.06 × 10−8
IV 1.38 × 10−22 9.29 × 10−31 2.55 × 10−14 0.23 5.17 × 10−5
V 3.14 × 10−13 3.79 × 10−22 7.36 × 10−9 0.71 0.09
VI 3.45 × 10−137 3.74 × 10−131 0.21 3.21 × 10−5 4.13 × 10−8

Total 1 1 1 1 1
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(a) Six fitted models and average ensemble for city of Cali (b) Six fitted models and average ensemble for city of Bogota

(c) Six fitted models and average ensemble for city of Barranquilla (d) Six fitted models and average ensemble for city of Cartagena

(e) Six fitted models and average ensemble for city of Medellin

Figure 2: Comparison between six models and its average ensemble model.

(a) Reported data from five cities to which models are fitted (b) Averaged ensemble model from five cities

Figure 3: Comparison fitted ensemble model with raw data.
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(a) Cali model forecast (b) Bogota model forecast (c) Barranquilla model forecast

Figure 4: Comparison fitted ensemble model using the first three models (which are models with no interventions; see definition
in Table 4).

magnitude than reported cases because it also included asymptomatic and pre-symptomatic cases along with symptomatic and
reported cases. As an example, we also show (Figure 4) the averaging of ensemble models when specific types of the models are
considered based on mechanisms captured in the models (see Table 4 for three different types of models categories).

We used a simple approach of averaging of ensemble models, however, there exists multiple other methods which are more
sophisticated (Kulinich et al., 2020) such as Markov Chain ensemble (MCE) method, and Convex optimization (COE) method.
For example, in the COE method, we compute a linear combination of the model outputs with ω1,ω2, . . . ,ωN weights which
minimizes mean squared differences with respect to observations:

min
ωj ; j=1,...,N

T∑︁
t=1

(ECOEt − Ot)2 s.t. ECOEt =
N∑︁
j=1

ωjMj,t ,
N∑︁
j=1

ωj = 1 ωj ≥ 0

The trend bias of regular time periods is key quantity and can be calculated by taking the difference between the inclination
parameter m in weighted ensembles and observations estimated using a linear function y = m ∗ x + b on validation data for each
time period (suppose there are k time periods; it could be weekly, monthly or quarterly). The overall weighted ensemble trend
bias is thus the mean of the trend biases for k different time periods.

5 Discussion

COVID-19 is a highly transmissible virus with the capacity to produce outbreaks and with high repercussions on lethality in
the vulnerable (individuals with pre-health conditions or elderly) population and with comorbidities. Mathematical models
and simulation applied to data ongoing epidemics allow anticipation in the phase of preparing mitigation plans. Based on the
estimates of the model, the distribution of hospital beds and intensive care units in the city available for response to an eventual
emergency have been planned. In this study, we highlight and present a use case for epidemic preparedness for Colombia and
its five major cities. The goal here was to estimate location-dependent transmission rates, reproduction number, and disease
burden using initial exponential growth of epidemics and provide robustness in the results via different types of models and
ensemble modeling technique.

The estimates of R0 here might be slightly lower (from 1.10 to 1.75) than those published by other studies (for example
studies from Asia and Europe (Wu and McGoogan, 2020; Adhikari et al., 2020; Lauer et al., 2020)) but it could be due to
lower density and reduced population mixing patterns in Colombia. We have observed the application of different techniques
to calculate R0, that could explain the different scenarios of a potential outbreak in Colombia. While Li et al. (2020) used the
duration of the serial interval, whose result is similar to ours when we use the same technique, our highest estimate was based on
the growth rate and the duration of similar pre-symptomatic and infectious periods. The pandemic in Colombia was recognized
approximately 7 days after the arrival of the first case in the country, where estimated date of arrival was March 2, 2020. Among
the 8 Latin American countries, Ecuador is estimated to have fastest initial exponential epidemic growth (0.26) and Panama the
lowest growth rate (0.21) with Colombia growth rate (0.24) being in the middle of the list.

We compared model outcomes for five different cities of Colombia using averaging of ensemble models. The weights in the
averaging of models in the ensemble were computed using error in fitting and number of estimated parameters. In the Models
I–II, only one parameter (transmission rate) was estimated; whereas, in the Models III–V, two parameters were estimated and
three parameters in Model VI (Table 8). Using error in the fit and number of estimated parameters, ensemble weights were
computed and average model is generated. Using the ensemble technique, the simplest SIR model was found to be better fit to
the data for the city of Cali; whereas, in the case of Bogota and Barranquilla, the dominant model was found to be SEIR model,
which captured basic epidemiological characteristics (most infection driven by latently infected individuals) of COVID-19. The
model with quarantine and isolation states was a best fit in case of Cartagena, showing that population followed prevention
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policies better in this region. The complex model (Model VI) was not the preferred model in the ensemble for all the five cities
of Colombia.

The present study shows a simple way of averaging the results from the model outcomes and using it to forecast outcomes
with lower uncertainty than each of the model separately in the ensemble. However, as with any other study, our study also
have a few limitations. The models considered were all single outbreak models and hence, were only meant to compare initial
disease burden in the pandemic between cities. Moreover, the available limited data were only used to parameterized the model.
In future, the work can be easily extended to include repeated peaks in an outbreak by modifying the models and incorporating
features such as waning immunity, demographic parameters, or multiple strains.

Public health departments can tremendously benefit from the advance warning from the model based forecasts and prepare
hospitals as well as alerting public of dangerously incoming epidemic surge. As shown here for the case of COVID-19 in Colom-
bia, multi-model ensembles can effectively and simply aggregate models’ predictions which are implemented under different
epidemiological and structural differences. Thus, giving a tool to decision makers in a form of more accurate single aggregated
prediction. Using such ensemble technique, public health departments can mitigate the full impact of an outbreak on a real
time basis while providing effective adaptive public health policy, which is key in face of fast changing information on newly
emerging diseases and its control. The ensemble technique is flexible and can rigorously capture disease trends that can support
quick public health decision making and long lasting policy design.
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