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ABSTRACT

We examine the e�ects of symptomatic individuals getting tested and the use of

contact tracing in a network model of disease transmission on di�erent epidemio-

logical metrics. These metrics include the length of the epidemic, number of people

infected, number of tests performed, and the likelihood of an epidemic occurring.

We utilize a network model to resolve the in�uence of contact patterns between

individuals as opposed to assuming mass action where all individuals are connected

to each other. We �nd that the e�ects of self-reporting and contact tracing vary

depending on the structure of the network. We also compare the results from

the network model with an analogous ODE model that assumes mass action and

demonstrate how the results can be dramatically and surprisingly di�erent.
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1 Introduction

Contact tracing is an important intervention strategy for controlling an infectious disease outbreak that is aimed at determining
with whom a known infectious person has recently been in contact. Those individuals that have been in recent contact with
the infected individual are then notified, quarantined, and tested. Contact tracing can require substantial investments in time,
money, and personnel in order to be successful, but there are a number of precedents for the utility of contact tracing in infectious
disease management. First introduced in the United States in the 1930s in attempt to control the spread of syphilis, contact
tracing has proven to be an effective method for the control of sexually transmitted infections (STIs) (Ramstedt et al., 1990;
Cowan et al., 1996). Contact tracing has been an important component to control efforts of emerging infectious diseases in
localized settings such as severe acute respiratory syndrome (SARS), Ebola, and Nipah virus (Dhillon and Srikrishna, 2018;
Donnelly et al., 2003; World Health Organization et al., 2014; Arunkumar et al., 2019). Most recently, contact tracing has been
included among a suite of non-pharmaceutical interventions (NPIs) in efforts to control the spread of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 (WHO, 2020; Steinbrook, 2020; MacIntyre, 2020).

In order for contact tracing to be effective, infected individuals must self-report and get tested to determine whether they
are infectious thereby initiating the contact tracing process. This becomes more difficult in diseases that involve asymptomatic
individuals, who generally would not self-report due to the lack of symptoms. An alternate approach is to carry out surveillance
testing across a population or even mandate testing for all individuals.

It is challenging for public health policy makers to make decisions about intervention methods. It can also be challenging
for modelers to choose the types of models that can provide accurate results to base these decision upon. Mathematical models
have been used to better understand the potential efficacy of contact tracing in infectious disease control and to help optimize
the contact tracing process (Müller and Kretzschmar, 2021; Eames and Keeling, 2003; Hyman et al., 2003; Hethcote and Yorke,
2014). Models used to study contact tracing vary in structure and complexity from relatively simple ordinary differential equa-
tion (ODE) models mimicking the impacts of contact tracing to agent-based models (ABMs) that track individuals and their
contacts explicitly (Müller and Kretzschmar, 2021). A number of studies have looked at contact tracing in combination with
other control measures. Klinkenberg et al. (2006) employed an ODE model investigating the balance between regular screen-
ing and contact tracing. They determined that contact tracing is only cost effective when disease prevalence is below a certain
threshold. Armbruster and Brandeau (2007) utilized a branching process model that included isolation and social distancing to
show that the efficacy of contact tracing may be a function of timing between infections, duration of infections, and delays in
testing.
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Karaivanov (2020) considered an SIR model on a network, illustrating that measures such as lockdowns, quarantines, and
social distancing may be better modeled on networks rather than in models where homogeneous mixing is assumed. Shaban et al.
(2008) also employed a network model with SIR dynamics to investigate the efficacy of contact tracing alongside vaccination.
Network models have been of particular use in contact tracing modeling studies and infectious disease modeling more generally
in part because they allow for consideration of individuals and their contact structures, but do not have the same limitations
in mathematical analysis that ABMs may have (Keeling and Rohani, 2011). Furthermore, numerous network approximation
methods have been developed that allow for analysis and simulation of network models while still maintaining important char-
acteristics of network structure (Tsimring and Huerta, 2003). In the context of diseases such as COVID-19 where NPIs such
as social distancing have been important, network models can be particularly useful in understanding how spread and control
dynamics change when individuals within the population change their behavior.

COVID-19 has renewed interest in contact tracing models and their utility in understanding the efficacy of different con-
tact tracing methods. This work has led to exploration of new methods of contact tracing which may be more effective than
traditional contact tracing approaches (Firth et al., 2020; Bradshaw et al., 2021). The works of both Firth et al. (2020) and
Karaivanov (2020) looked more specifically at the role of social networks as these networks are more likely to incorporate fre-
quent interactions among contacts, and access to healthcare resources may differ across different social networks. While not
specifically considering contact tracing, Azizi et al. (2020) considered another important question specific to modern day infec-
tious disease control: how does the rapid availability of information impact awareness of infectious disease transmission? Using
a network model that mimics both infectious disease and information dynamics, they investigate how different thresholds of
awareness impact epidemic dynamics.

Much of the recent work employing network models to investigate contact tracing have sparked a number of important
questions that are relevant to the control of COVID-19 spread as well as the control of other directly transmitted diseases. For
instance, how does the willingness to be tested affect the spread of the disease? How does the effectiveness of contract tracing
impact diseases transmission? How might contact tracing play a role in the ability to prevent transmission and reduce outbreak
size? How will these factors be affected by the structure of the network and other NPIs such as social distancing?

Herein, we aim to answer these questions in the context of directly transmitted diseases with an epidemiological model on
a network. We investigate the importance of key variables such as rates of contact tracing, rates at which symptomatic individ-
uals get tested, and the structural properties of the network on the ability of contact tracing to impact the spread of disease.
These structural properties are related to how people are connected within the network and the effects of social distancing. We
also emphasize the importance of this network structure by comparing the network model to an approximate ordinary differ-
ential equation (ODE) model. In the sections that follow, we describe our epidemiological model, network, and the interplay
between the two, along with the ODE model. We present results for a number of scenarios that result from different parameter
combinations, and discuss our results and their importance for control of directly transmitted diseases.

Some surprising conclusions that we observed in our simulations include that there exists a minimum threshold for contact
tracing where the likelihood of outbreaks drops when above this threshold in the network model, whereas this does not occur in
the ODE model. Also that the length of the epidemic has a reverse behavior with respect to the contact tracing rate where in the
network model as the contact tracing rate increase the length of the epidemic decreases, and in the ODE model this is reversed.
We find the lowest number of people infected in the network model occurs for high contract tracing rates and high self reporting
rates. In the ODE model the lowest number of infections are found for low contact tracing rates and high self reporting rates.
We also find that the highest number of test performed occurs at low contact tracing rates for the network model, whereas for
the ODE model this occurs at high contact tracing rates. We also discuss the important differences in the results between the
network model and the ODE model. These contrast in conclusions between these models is a direct result of the fact that mass
action that is used as a simplifying assumptions in the ODE model.

2 Model Description

This section outlines two distinct models for exploring the impact of contact tracing and self-reporting on an epidemic: a
stochastic network model and an ODE model. Our goal in this study is to demonstrate various behaviors within the network
model and to highlight the significant differences in predictions relative to the ODE model. We divide the presentation of the
epidemiological network model into two parts: Section 2.1 describes the disease dynamics of individuals and Section 2.2 de-
scribes the network structure that characterizes the interactions between individuals. In 2.3, we describe an ODE model that
approximates mean-field dynamics of the disease spread.

The disease model expands upon a standard SEIR-type epidemic model that distinguishes between symptomatic and asymp-
tomatic infections. It includes additional states to track individuals that are quarantined while their contacts are tested, as well
as individuals that are tested and isolate themselves while awaiting results. Figure 1 summarizes the possible transitions between
states for a given individual.
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Figure 1: Schematic of transitions between states in the disease transition model: susceptible (S), exposed (E), symptomatic
infected (I), asymptomatic infected (A), recovered (R), quarantined during contact tracing (Q), tested as susceptible (TS), tested
as recovered (TR), those who are infected/asymptomatic and then tested (TQ), and those who recover while quarantined (QR).
Approximate transition probabilities are summarized in Table 1.

The disease model assumes that infected individuals can spread the disease through contact with others. The stochastic net-
work model assumes a Watts-Strogatz random graph (Watts and Strogatz, 1998) to capture the structure of contacts between
individuals. The ODE model, on the other hand, is valid for a well-mixed population (Kiss et al., 2017). In Section 3, we pro-
vide a comparison of the two modeling approaches, highlighting important distinctions between the predictions. The network
approach has the advantage of explicitly capturing details of the contact between individuals by which the epidemic spreads and
tracing is implemented.

2.1 Disease transmission model

We represent a population of interacting individuals as N nodes, each connected by edges to other nodes with whom they regu-
larly come into contact. Each individual in the model is in one of the following states: susceptible (S), exposed (E), symptomatic
infected (I), asymptomatic infected (A), recovered (R), quarantined (Q), tested as susceptible (TS), tested as recovered (TR),
those who are exposed or infected (either symptomatic or asymptomatic) and then tested (TQ), and those who recover while
quarantined (RQ). Each individual has a transition probability depending on the current state they are in and the destination
state. These possible transitions are summarized by Figure 1 and the associated transition probabilities are presented in Table 1.

Infected individuals can either be symptomatic (I) or asymptomatic (A) and spread the disease to each of their susceptible (S)
contacts with rate β. We note that this rate, as are all of the following rates we discuss, are given as probabilities per unit time.
Successful spread of the disease is modeled by a transition from susceptible to exposed (S → E). Exposed individuals become
symptomatic with rate αI , and asymptomatic with rate αA. Once showing symptoms, symptomatic nodes choose to get tested
(I → TQ) with rate σ and recover (I → R) with rate γI .

The testing process for an infected symptomatic individual is modeled by a transition of the node to the stateTQ, whereupon
the node isolates itself from contact with other nodes. Test results are returned with rate δ and the positive testing individuals
transition to a quarantine state (Q) whereupon contact tracing begins. All of the contacts of the individual in quarantine are
tested with rate τ until that node transitions out of quarantine and into a recovery state (Q → RQ), which occurs with rate γQ.
All individuals tested during the contact tracing process will isolate from their contacts until the test results are returned. This
is modeled by a transition of the individual to awaiting test results (S → TS , R → TR, E → TQ, I → TQ, A → TQ), followed
by a transition either back to its original state or to the quarantine (TS → S, TR → R, TQ → Q) depending on the result of
the test.

We assume the test accurately detects infections in exposed and infected individuals, and do not account for errors in test
results. We assume perfect isolation of individuals while waiting for the test results in quarantine, and thus there is no chance
for disease spread by any node in states TQ or Q. We also assume recovered individuals in states R and RQ cannot be reinfected,
and are thus effectively removed from the epidemic process. Because there is no memory in a Markov process, the model does
not rule out the possibility of a contact being tested multiple times during the contact tracing of an individual. We fix the rate
for completion of the tracing process to γQ = 0.5. Thus, the quarantine period lasts for two days on average, and an increase in
τ leads to an increase in the average number of contacts that can be tested during that period. All model parameters, along with
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Table 1: Linear approximation to probability for a node in state S to make the transition to state Q , i.e. S → Q , during a
the time interval ΔT , given that it has nP contacts in states P. Figure 1 summarizes the possible states in the disease transition
model.

Transition Probability
S → E (nI + nA)βΔT
E → A αAΔT
E → I αIΔT
A → R γAΔT
I → R γIΔT

Transition Probability
I → TQ (σ + nQτ)ΔT
A → TQ nQτΔT
E → TQ nQτΔT
TQ → Q δΔT
Q → RQ γQΔT

Transition Probability
S → TS nQτΔT
TS → S δΔT
R → TR nQτΔT
TR → R δΔT

Table 2: Typical parameter values for our disease transmission model summarized by Figure 1 and Table 1, and the Watts-
Stogatz contact network model. The rates are given as probability per unit time in days−1. Values were chosen to be consistent
with those of directly transmitted infectious diseases.

Parameter Value Description Reference(s)
β 0.05 Transmission rate per contact Tupper et al., 2020

αI 0.6 Rate for exposed to become symptomatic

{Lessler et al., 2009
Cope et al., 2018
CDC, 2022a

αA 0.1 Rate for exposed to become asymptomatic
{Lessler et al., 2009

Cope et al., 2018

γI 0.1 Rate for symptomatic to recover CDC, 2022a,b
γA 0.1 Rate for asymptomatic to recover CDC, 2022a,b
γQ 0.5 Rate for tracing process completion Kucharski et al., 2020

σ 0–1 Rate for symptomatic to choose to get tested —
τ 0–1 Rate of testing contacts during tracing —
δ 0.3 Rate for testing to be completed Kucharski et al., 2020
κ 20, 40 Average degree of nodes in contact network —
p 0.01, 0.1 Rewiring probability for edges in contact network —

typical values, are given in Table 2. We note that parameter values were chosen not to reflect any specific disease; however, we
assume that the pathogen can be transmitted via direct contact as is the case with many respiratory pathogens. The values we
have chosen are consistent with diseases caused by viruses such as influenza, SARS-CoV, SARS-CoV-2, and adenovirus as cited
from empirical and modeling literature. Parameters not obtained directly from literature, such as κ and p, were chosen to reflect
markedly different contact structures so that we could emphasizes differences that result from these different structures.

We carry out the process outlined above as a discrete-time Markov chain and take the time step ΔT small enough in our
numerical implementation so that all of the transition probabilities, summarized in Table 1, are well-approximated at order
O(ΔT ). In particular, we multiply the total number of infected symptomatic and asymptomatic contacts, nI + nA, by the
per-contact probability rate of infection β to the approximate effective probability rate of infection for a given node. Similarly,
the effective probability rate for a node to be tested from contact tracing is approximated by nQτ, where nQ is the number of
quarantined contacts that node has. Simulation code for an implementation of this model in Matlab is available from GitHub
(2022).

2.2 Network structure for contacts

We consider the stochastic disease transition model summarized by Figure 1 and Table 1 on a random graph were the N nodes
represent individuals and edges represent regular contact between individuals. A Watts-Strogatz network is characterized by
average node degree κ = 2k, for some natural number k, and rewiring probability 0 ≤ p ≤ 1. The graph is generated by first
constructing a regular ring network in which the nodes are all connected to k of their nearest neighbors on each side by an edge.
The edges are then rewired with probability p. If chosen to be rewired, one of the two nodes associated with the edge is replaced
by another chosen from the remaining nodes uniformly at random in such a way that there are no duplicates or self-edges. An
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(a) p = 0 (b) p = 0.01 (c) p = 0.1

Figure 2: Watts-Stogratz networks represented as rings ofN = 30nodes and average degree of κ = 10. The rewiring probability
p increases from left to right.

advantage of a Watts-Strogatz network structure in this setting is that it allows for two types of control: the parameters κ and p,
which we relate to social distancing and connectivity in the network, respectively. See Figure 2 for examples withN = 30 nodes,
average node degree κ = 10 and different values of the rewiring probability p.

The degree of a node is the number of other nodes that it comes into regular contact with, and thus measures the maximum
number of nodes it could infect if infectious itself. The average degree κ is interpreted as a measure of the level of social distancing
followed by the population. For this study, we take κ = 20 and κ = 40 on a N = 1000 node network to consider populations
with two different levels of social distancing. These values are chosen to consider two networks, one with twice as many contacts,
on average, as the other. This is consistent with recent literature investigating the impacts of 50% reduction in contacts to
investigate impacts of social distancing on disease transmission (Block et al., 2020).

The rewiring probability, on the other hand, gives a measure of how mixed the population is. When p = 0, the nodes all
have exactly the same degree κ and, importantly, only interact with their nearest neighbors. This insulates “far-away” nodes
from the risk of infection. Indeed, the average minimum path length between any two nodes decreases rapidly as a function
of p (Newman et al., 2000). Thus, as p increases, there are fewer “far-away” nodes. The choice of p also impacts the degree
distribution, in particular, increasing p increases the probability of having very high-degree nodes. We consider p = 0.01 and
p = 0.1 to model populations that are less and more mixed. The lower value is representative of family and workplace networks
whereas the higher value is more representative of school or university networks (Block et al., 2020; Mossong et al., 2008).

2.3 ODE model

In addition to the network model described above, we also consider the following ODE model of the disease transmission process
summarized by Figure 1:

¤S = −κ̂β(I + A)S − κ̂τQS + δTS
¤E = κ̂β(I + A)S − κ̂τQE − (αA + αI )E
¤A = αAE − γAA − κ̂τQA
¤I = αIE − γI I − κ̂τQI − σI
¤R = γAA + γI I − κ̂τQR + δTR

¤TS = κ̂τQS − δTS
¤TR = κ̂τQR − δTR
¤TQ = κ̂τ (E + A + I)Q + σI − δTQ
¤Q = δTQ − γQQ

¤RQ = γQQ

(1)

where κ̂ = κ/(N − 1). All other ODE model parameters are the same as those given in Table 2. Our numerical simulations of
the ODE model use Matlab’s ode15s solver (Shampine and Reichelt, 1997).

The ODE model (1) represents the lowest-order mean field theory for approximating the average number of nodes in each
state for the stochastic model on a homogeneous, uniformly random network of N nodes with degree κ. While this model does
not explicitly capture details about the structure of the contact network, we can partially account for the degree of connectivity
with an effective infection rate κ̂β based on the average degree κ of the nodes on the network. However, this correction misses the
impact of heterogeneity in the degree of the nodes. Moreover, the model (1) cannot resolve the impact of the way the network
connections are structured, e.g., there is no analogous way to account for the rewiring probability p. As illustrated by our results
in Fig. 3, we expect ODE model to match more closely with the stochastic model for more connected (κ → N − 1) and more
well-mixed (p → 1) networks.

3 Results

We use the two modeling approaches described in Section 2 to explore the impact of self-requested testing by symptomatic
individuals and requisite testing of the contacts of those who test positive on disease dynamics. In Section 3.1, we compare
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time series of the disease spread with different network parameters to the predictions of the ODE model. This reveals a range of
behaviors in the network model that differ to varying degrees from the predictions of the ODE model with analogous parameters.

Section 3.2, we investigate the effects of the rates of contact tracing, τ, and self-reporting, σ . Simulation results from the
stochastic network model and the approximate ODE model under different scenarios are presented, keeping track of several
measures described below. The scenarios represent different levels of social distancing, which are related to κ, and mixing within
the population, which is related to p. Under these different conditions we explore the impact of the network structure on the
epidemic by examining how the following measures vary as a function of σ and τ.

• f100: The fraction of outbreaks that have a minimum total infections of at least 100 individuals in the stochastic network
model. In the deterministic ODE model, f100 will take on a value of either 0 or 1, depending on whether or not at least
100 individuals are infected during the epidemic.

• tE : The duration of the epidemic in days, where the end of the epidemic is defined to be the time when there are no more
active nodes in the network model, and when the active infectious compartments total less than 0.1 in the ODE model.
Here, we consider the states E, I , A, TQ and Q as active in the sense that they are currently, or soon to be, infected.

• Nw: The number of infection waves is calculated based on a threshold of at least 30 in the peak prominence (MathWorks-
MATLAB, 2021) of active nodes.

• Itot : The total number of infections during the epidemic.

• Ttot : The total number of tests used during the epidemic.

We note that the choice of threshold of 0.1 active nodes in definition for the end of an epidemic in tE for the ODE model does
have an impact on the results. This impact manifests itself as a sharp cutoff in the lower right of panels (c) and (f) in Figures 6-9.
Because the compartments can take on arbitrarily small values in the continuous ODE model, simulations with low rates of self-
reporting (small σ) and high rates of contact tracing (large τ) can lead to several infection waves with the active nodes falling to
nearly zero in between. The locations of the cutoff in the (τ, σ) parameter plane depends on our choice of the threshold, which
is somewhat arbitrary. This raises the questions of what it means to have a fraction of an individual infected and how small
should that fraction be before we assume it cannot propagate the disease further and, at a practical level, can lead to numerical
stiffness issues in simulations. This highlights a potential challenge of interpreting simulation results from ODE models when
the level of infection is very low.

3.1 Time series comparisons

We first compare the time series between the stochastic network model and ODE model (1). Figure 3 considers three different
pairs of parameter values, (κ, p), related to the network structure, and chooses appropriate parameters in order to obtain an
equivalent ODE model. These reveal some key differences in predicted outcomes.

Panel (a), where the average degree is κ = 40 and the rewiring probability is p = 0.1, represents both relatively high contact
and mixing. In this case, the 200 trials of the stochastic network model (light gray) appears to initially follow the predictions from
the ODE model (thick blue) during the first wave of the outbreak. However, there is a significant deviation in the solutions from
the network model for subsequent infection waves. The ODE model predicts a larger number of waves than does the network
model.

In panel (b), the average degree is halved to κ = 20 while τ and β are doubled in order to maintain equivalent rates in the
ODE model. In this case, there is less of an agreement between the two models. The ODE model over-predicts the spread of
the epidemic. This over-prediction is clearly seen in panel (c) where the average degree is again set to κ = 20 but the rewiring
probability is reduced by a factor of 10 to p = 0.01. Based on the time series, varying these parameters significantly reduces the
outbreak size in the trials of the network model. With a limit on the number of possible contacts in the network model, the
propagation of the disease spread can be halted under circumstances with social distancing, i.e. lower degree, and less diverse
network, i.e. lower rewiring rate. This does not occur in the ODE model due to the mass action assumption.

Figure 4 shows the impact that rewiring probability p can have on the measures of interest listed at the start of Section 3
in the stochastic network model. We consider 200 trials at each (even) mean node degree 2 ≤ κ ≤ 60 for both p = 0.01 and
p = 0.1. For each κ, the parameters τ and β are adjusted in the network model so that τ̂ and β̂ that appear in the ODE model
are fixed. The ODE model thus makes the same prediction, while the median and middle quartiles based on 200 trials of the
network model are shown with dashed black and shaded cyan, respectively. The minimum and maximum from the trials are
also indicated by black dotted lines.

In general, increasing the degree of the network leads to more total infections Itot and tests performed Ttot , and thus a higher
fraction of outbreaks. This also leads to longer epidemics and more waves. Comparing the different rewiring rates we again
observe increases in each of the measures with the higher rewiring rate. The higher rewiring rate effectively shrinks the diameter
of the network and allows for faster disease spread throughout the population.
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(a) κ = 40, p = 0.1 (b) κ = 20, p = 0.1 (c) κ = 20 p = 0.01

Figure 3: Comparison of predictions between the ODE model (1) with fixed parameters and the stochastic network model
for different sets of network parameters: (a) κ = 40, p = 0.1; (b) κ = 20, p = 0.1; and (c) κ = 20, p = 0.01. In each case, the
time series from a simulation of the ODE model is given by the thick blue line, and the light gray lines show each of 200 trials
of the stochastic network model. Parameters are given in Table 2, except that σ = 0.3, and τ, β are adjusted to keep the ODE
predictions the same across different degrees κ. In particular, τ = γQκ0/κ and β = β0κ0/κ, where κ0 = 40, and β0 = 0.05. These
parameters correspond to ODE simulation results in panel (f) of Figures 5-9.
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Figure 4: Comparison of the five metrics of interest discussed in Section 3 as the average degree κ of the network varies.
For each degree, we run 200 simulations with N = 1000. Minimum and maximum values from simulations are shown with
dotted lines, and mean values are shown in dashed lines. The cyan region is the middle 50 percent of simulations. Parameters
are given in Table 2, except that σ = 0.3, and τ, β are adjusted to keep the ODE predictions the same across different degrees κ.
In particular, τ = γQκ0/κ and β = β0κ0/κ, where κ0 = 20, and β0 = 0.05. These parameters correspond to ODE simulation
results in panel (c) of Figures 5–9. Predictions from the ODE model: tE = 411 days, Nw = 2, Itot = 757, Ttot = 1981 days.
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(a) Network Model: κ = 20, p = 0.01 (b) Network Model: κ = 20, p = 0.1 (c) ODE Model: κ = 20

(d) Network Model: κ = 40, p = 0.01 (e) Network Model: κ = 40, p = 0.1 (f) ODE Model: κ = 40

Figure 5: Simulation results for fraction of simulations f100 in which there is an outbreak of at least 100 cases. (a) κ = 20 and
p = 0.01, (b) κ = 20 and p = 0.1, (d) κ = 40 and p = 0.01, and (e) κ = 40 and p = 0.1. (c) and (f) show results from the ODE
model for κ = 20 and κ = 40, respectively.

The distribution of the number of waves Nw did not change much with the degree of the network for either value of p;
however, when p = 0.01, the maximum value observed increased with the degree until κ ≥ 30 when the maximum number of
waves oscillated between Nw = 3 and Nw = 5. When p = 0.1, the maximum number of waves oscillated between Nw = 3 and
Nw = 5 when κ ≥ 10. The median and minimum value of number of waves was Nw = 1 for κ ≥ 10 and κ ≥ 15, respectively.

Overall for the lower rewiring rate, p = 0.01. there was a steady increase for each of the measures. On the other hand for the
higher rewiring rate, p = 0.1, we see an initial climb in each of the measures though beyond κ = 20 to 30 the increases in the
measures was much slower. This suggests that for smaller rewiring rates average degree has a larger effect on the measures than
at higher rewiring rates.

3.2 Comparison of the e�ects of contact tracing and self-reporting

To examine the effects of contract tracing and self-reporting, we vary the associated parameters τ and σ and create plots of the
measures outlined at the start of Section 3. In Figures 6–9, we consider four sets of network parameters of the stochastic network
model and the two analogous cases of the ODE model. For the network model the average degree, κ, and the rewiring rate, p,
are varied, whereas in the ODE model we vary only κ as the predictions do not depend on p. In cases (a), (b) and (c) the average
node degree is κ = 20 (k = 10), which represents a scenario in which the level of social distancing is higher, whereas in cases (d),
(e) and (f) the average node degree is κ = 40 (k = 20) so there is much less social distancing. Cases (b) and (d) have a higher
rewiring rate (p = 0.1) than in cases (a) and (c) where the rewiring rate is p = 0.01. The former group represents situations where
more rapid mixing can occur since these networks are less “ring-like” and more random, see Figure 2(c).

Figure 5 shows the fraction f100 of cases when a large outbreak (more than 100 cases total) occurs. When social distancing is
the strongest and the relative mixing is the smallest (i.e., case (a)), the fraction of large outbreaks is minimal, and large outbreaks
only occur when there is essentially no self reporting or when both testing rates and self-reporting rates are very low. On the
other hand when social distancing is weaker and the relative mixing is strong (i.e., case (d)), the chances of a large outbreak is
much greater. In fact a large outbreak occurs almost every time when the self-reporting rate σ is less than 1/2 regardless of the
rate of testing, which suggests that even large rates of testing cannot compensate for a lack of self-reporting when mixing is high
and social distancing is low.

If rates of testing and self-reporting are both high, however, it is still possible to avoid large outbreaks. In the intermediate
cases (i.e., cases (b) and (c)), we found that doubling the average degree has a larger effect on the fraction of outbreaks that are
large than does increasing the rewiring rate p by a factor of 10. When the average degree κ is doubled, more large outbreaks
occurred when the rate of testing was low for both values of p considered, and the relationships between the fraction of large
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(a) Network Model: κ = 20, p = 0.01 (b) Network Model: κ = 20, p = 0.1 (c) ODE Model: κ = 20

(d) Network Model: κ = 40, p = 0.01 (e) Network Model: κ = 40, p = 0.1 (f) ODE Model: κ = 40

Figure 6: Simulation results for total length in time tE of the epidemic in days. (a) κ = 20 and p = 0.01, (b) κ = 20 and p = 0.1,
(d) κ = 40 and p = 0.01, and (e) κ = 40 and p = 0.1. (c) and (f) show results from the ODE model when κ = 20 and κ = 40,
respectively.

outbreaks f100 and the parameters σ and τ become substantially more nonlinear, in particular when the rewiring probability is
low. Due to the smaller amount of mixing, increasing both σ and τ will more likely decrease the chances of a large outbreak,
whereas with the higher mixing rate increasing the self-reporting rate alone has the largest effect.

For the ODE model we see that there is always an outbreak, see (c) and (f) in Figure 5. This is due to the lack of structure
in this model. In the network model the disease can end when infected nodes have no susceptible nodes to infect due to the
lack of connections as well as to effective contact tracing. This does not happen in the ODE model due to assumption that the
population is well mixed.

Figure 6 demonstrates the importance of self-reporting and contact tracing in determining the duration tE of the epidemic.
In the network model tE is quantified by the number of days until there are no more infectious individuals. The epidemic runs
unabated for long durations at low σ and low τ for all network parameters considered. Under stronger social distancing, κ = 20,
the self-reporting rate appears to have more effect than the contact tracing, whereas in the weaker social distancing case, κ = 40,
their effects are comparable in reducing tE .

For the ODE model we define the epidemic time tE to be when the number of infectious is less than 0.1. Here we see the
opposite behavior from the results of the network model: the length of the epidemic increases as the rates of contact tracing and
self-reporting increase. Again because of the lack of structure within the ODE model the epidemic is allowed to continue due
to all of the allowed connection being present between individuals. As the rates increase this slows down the epidemic spread,
however, the disease will not stop until everyone has been infected. We note that the sharp cutoff in the lower part of panels (c)
and (f) associated to the ODE model result from the definition that an epidemic ends after the active nodes fall below a total of
0.1. Above the sharp cutoff, the simulation never falls below the threshold of 0.1 between any of the waves. Below the threshold,
we see cases where the active nodes fall below 0.1 after the first wave, but additional waves would be possible in the continuous
ODE model where the active nodes can fall arbitrarily close to zero before starting a new wave. Lowering the choice of threshold,
allows the trends above the cutoff to continue further down in the graph, effectively pushing the cutoff lower. The effect of the
threshold here also manifests in panels (c) and (f) in Figures 7, 8 and 9 below.

As previously mentioned it is possible to observe multiple waves over time. In Figures 7 (c) and (f) and in Figure 3 we see
multiple waves in the ODE approximations of the network model, though there are typically fewer realized in the network model.
The number of waves generally increase as the contact tracing rate increase, especially for low- to mid-level rates of self-reporting.

In Figures 7 (a), (b), (d) and (e) we see that the average number of the waves Nw for the network simulations are typically
one or less. The cases where there is at least one wave on average occur for low values of σ and τ, however in the case with higher
node degree and rewiring rates we generally see at least one wave for values of σ or τ less than 0.5.

Examining the results of the ODE model show that there tend to be more waves with higher levels of contact tracing. This
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(a) Network Model: κ = 20, p = 0.01 (b) Network Model: κ = 20, p = 0.1 (c) ODE Model: κ = 20

(d) Network Model: κ = 40, p = 0.01 (e) Network Model: κ = 40, p = 0.1 (f) ODE Model: κ = 40

Figure 7: Simulation results for the average number Nw of waves occurring in the simulations. (a) κ = 20 and p = 0.01, (b)
κ = 20 and p = 0.1, (d) κ = 40 and p = 0.01, and (e) κ = 40 and p = 0.1. (c) and (f) show results from the ODE model when
κ = 20 and κ = 40, respectively.

is especially true for lower rates of self-reporting with the smaller κ = 20, and generally true for self-reporting rates above 0.2 for
κ = 40. For the most part the region of the parameter space with higher Nw are disjoint when comparing the network and ODE
models, and hence give very different results.

An important measure in epidemics involves the total number Itot of cases of infections within a population, see Figure 8.
For the case where there is more social distancing, self-reporting is critical in order to keep Itot down. In the case where there is less
social distancing, increasing contact tracing becomes more critical in keeping the total number of infections down. Alternatively,
in the case with less social distancing and a higher rewiring rate, κ = 40 and p = 0.1, we essentially need to require σ , τ > 0.5 in
order to keep the total number of infections below 50% of the population.

For the ODE model we observe more complicated behavior. In the case with a higher level of social distancing, Figure 8 (c),
this behaves more similarly to the network models where increasing both contact tracing and self-reporting is important to keep
the percent of the population infected low. On the other hand in Figure 8 (f), due to the increase of the number of connections
between individuals it is nearly impossible to prevent the disease spreading to the entire population. The only region where
essentially not everyone gets infected is with low self-reporting and moderate to high levels of contact tracing. We point out
that for these simulations our condition of having the simulations stop at 0.1 infected people can result different answers if the
simulations are allowed to continue. This is because in the continuous model the levels can drop very low but the disease can
still progress over long periods of time and eventually infect the entire population.

Figure 9 presents the number Ttot of tests performed over the entire epidemic. This can be used in cost estimates of con-
ducting contact tracing during an epidemic. Tracking the total number of tests varies nonlinearly with both the self-reporting
rate, σ , and the contact tracing rate, τ. In the network model when κ = 20 and p = 0.01 not many tests are preformed, and
the maximum number of tests occur when the self-reporting rate is low and contact tracing is moderate to high. This is due to
the structure of the network since we see that in Figure 5, the likelihood of the epidemic spread is small and only occurs for low
values of the self-reporting rate. It also suggests that, depending on self-testing rates, it may be possible to reduce the overall cost
by increasing resources towards contact tracing.

Again considering the network model at the other end of the spectrum with higher node degree, κ = 40, and higher mixing
rates, p = 0.1, we see that most individuals get tested when the self-reporting rate is low to moderate and the contact tracing rate
is moderate to high. In most cases the number of tests decrease when the self-reporting rate increase beyond 50%.

Not surprisingly, as the contact tracing rate increases the total number of tests performed increases. However, generally the
total number of tests tend to decrease, after reaching a maximum, as the self-reporting rate increases. This makes a case that
educating the public to get tested is critical both to decreasing the likelihood of an epidemic occurring but also as a way to keep
costs down.
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(a) Network Model: κ = 20, p = 0.01 (b) Network Model: κ = 20, p = 0.1 (c) ODE Model: κ = 20

(d) Network Model: κ = 40, p = 0.01 (e) Network Model: κ = 40, p = 0.1 (f) ODE Model: κ = 40

Figure 8: Simulation results for total number Itot of people infected. (a) κ = 20 and p = 0.01, (b) κ = 20 and p = 0.1, (d) κ = 40
and p = 0.01, and (e) κ = 40 and p = 0.1. (c) and (f) show results from the ODE model when κ = 20 and κ = 40, respectively.

(a) Network Model: κ = 20, p = 0.01 (b) Network Model: κ = 20, p = 0.1 (c) ODE Model: κ = 20

(d) Network Model: κ = 40, p = 0.01 (e) Network Model: κ = 40, p = 0.1 (f) ODE Model: κ = 40

Figure 9: Simulation results for total number Ttot of tests performed. (a) κ = 20 and p = 0.01, (b) κ = 20 and p = 0.1,
(d) κ = 40 and p = 0.01, and (e) κ = 40 and p = 0.1. (c) and (f) show results from the ODE model when κ = 20 and κ = 40,
respectively.
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The ODE model reveals very different behavior. As the self-reporting rate increases so do the number of tests performed.
The contact tracing rate has little effect in these cases which is counter-intuitive. The only effect occurs when contact tracing
is essentially non-existent which results in increasing the number of tests performed. One does see throughout Figure 9 that
repetitive testing is occurring since the maximum counts can be above the total population of 1,000. This occurs in both models,
and appears to be more frequent in the ODE models.

4 Discussion

Limiting outbreaks during an epidemic with the presence of asymptomatic spread is difficult in general. However, once an indi-
vidual has been identified as infectious, contact tracing aids in limiting spread by testing and isolating those who have a significant
chance of having been infected. Applying resources toward the tracing process can increase the rate at which contacts can be
tested, and thus more quickly identify infections. Since the process cannot be initiated until an infected person is identified, the
rate at which symptomatic individuals decide to get tested plays a key role in the overall success of the contact tracing process. In
this study, we explored the interplay between rates of contact tracing of an infected individual and how likely someone showing
symptoms will get tested in controlling an epidemic.

We constructed a stochastic network model to explore tracing and testing protocols within an epidemic, and compared
the results to an analogous ODE model based on the assumption of a well-mixed population. The contact tracing process is
tied to the structure of regular contacts between individuals in the population. It is not surprising that the predictions of an
ODE model with an underlying assumption of a well-connected and well-mixed population are very different from a network
approach that explicitly captures the details of this contact structure. This result in particular is one that has been observed in
other comparisons of explicit network models and their ODE approximations (Müller and Kretzschmar, 2021). Our focus is
on examining the interaction between rates of self-reporting and contact tracing on different measures under various network
structures. We carried out simulations over a range of parameters, and calculated resulting measures of interest over realizations
of a Watts-Strogatz random network. We considered high and low values of the mean degree κ, which relates to how well-
connected the population is, as well as low and high values of the rewiring probability p, which relates to how well-mixed the
population is.

The rate of testing, σ , which characterizes the rate at which infected individuals self-report symptoms and get tested, and the
rate of the contact tracing, τ, which characterizes the rate at which contacts of a quarantined individual are tested, have different
effects in our simulations of the network model. Generally the self-reporting rate, σ , is critical to controlling the progress of the
spread of the epidemic. Clearly the process of contact tracing cannot be effective if there is no self-reporting occurring due to
the lack of targets for contact tracing. When self-reporting is occurring, having the contact tracing rate above some minimal
rate, around 30% of a quarantined node’s contacts per day (based on our set of parameters), resulted in a positive effect on the
decreasing the spread of the epidemic in the network model. Contract tracing at and above this threshold resulted in decreases
in the chance of having an outbreak, epidemic time, and number of waves. The total number of tests, on the other hand, did not
vary monotonically with these parameters. There is a “hump” that, if overcome, can actually reduce the overall number of tests
used by sufficiently curbing the spread of the disease and reducing the size of the outbreak. Thus, near the parameters associated
with the hump, putting more resources into tracing and encouraging self-reporting of symptoms has the potential to actually
reduce the overall cost of the control measures.

Results from the ODE model follow different, and in some cases contrary, qualitative trends from the network model. The
differences are due to a few factors including model choice. The ODE model works on a continuous variable unlike the network
model, which complicates the stopping criteria for the epidemic. The fact that the number of active individuals never falls to
exactly zero contributes to the contrary results relative to the network model. This is in part due to the decision of how to define
the end of the epidemic. The choice of threshold level for ending the epidemic has impact on measures of interest, as seen by the
sharp cut-offs in panels (c) and (f) of Figures 6–9. The specific threshold level controls the location of this sharp cutoff, but the
epidemic can persist for any nonzero threshold value since new waves can develop from an arbitrarily small level of infections
given small enough σ and large enough τ.

Additionally, due to the assumption of mass action, a large fraction of the susceptibles are pulled into isolation as contacts
of more quarantined individuals are tested. This reduces the available population to spread of the disease and consequently
extinguishes the outbreak. However, once the quarantined population returns to being susceptible, an extremely small level of
infection may be enough to initiate another wave and restart the process. The ODE model tends to produce more waves since
some level of infection always remains to act as a potential seed for the next wave. We also note that the structure of the waves
seen in the ODE time series plots of Figure 3 suggests fast-slow dynamics may be at play (Wechselberger, 2020; Schecter, 2021;
Jardón-Kojakhmetov et al., 2021). This may provide a path forward for analysis of the ODE model, particularly in the low σ
and high τ regime where waves can be initiated by vanishingly small levels of infection.

Epidemic waves are often a part of an emerging infectious disease, and have in fact been observed during the recent COVID-19
pandemic (Dong et al., 2020). These waves occurred when large numbers of individuals were reintroduced to public areas where
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exposure to infectious people can occur. This often occurred during holidays when people gathered, or when restrictions were
removed or eased, or even when a new variant started spreading within the population. These waves then slowed down as the
susceptible population is depleted and as restrictions are reinforced (Hale et al., 2021). Although we are not modeling this sit-
uation in our work, the dynamics are similar. We did not account for changes in human behavior during or in response to the
epidemic beyond quarantine and isolation as a result of testing and tracing. However, similar infection waves have been also
been observed in ODE models in which individuals switch to behaviors that reduce disease transmission in response to high
levels of infection (Poletti et al., 2009; Schecter, 2021). A network approach may be able to capture more details of this process
as individual behaviors are often strongly influenced by those they come into regular contact with. Future work could incorpo-
rate behavioral changes into our model to assess the impact of interactions between these changes, testing, and tracing. Those
making policy decisions as well as those modelers assisting policy makers should carefully consider the models and how decisions
are make based on those models.

Numerous studies have investigated contact tracing in network, ODE, and branching process models (Müller and Kret-
zschmar, 2021; Kwok et al., 2019). In one of the first theoretical analyses of contact tracing in network models, the authors
explored relationships between the efficiency of contact tracing and the basic reproductive number R0 and showed that the
relationship between contact tracing efficiency and R0 held under a variety of scenarios except when high levels of clustering
occurred in a network (Eames and Keeling, 2003). Armbruster and Brandeau (2007) investigated the cost-effectiveness of con-
tact tracing with and without additional screening and found increases in tracing may have diminishing returns in reducing
disease prevalence in a population. In Shahtori et al. (2018), the authors showed that contact tracing and rapid hospitalization
early in an Ebola outbreak has a significant impact on reducing cases compared to tracing that begins later in an outbreak, a
result which our results support given that higher rates of self-reporting and willingness to get tested lead to earlier detection
and quarantine of cases. In recent work looking at COVID-19 control via contact tracing, Bradshaw et al. (2021) showed that
bi-directional contact tracing aimed at identifying both potential infectors and infectees was more effective than uni-directional
contact tracing that targets only potential infectees, and Firth et al. (2020) showed that tracing contacts of contacts may also be a
better approach than targeting only potential infectees that interact with an index case. Both of these approaches, like our work,
emphasizes that strategies aimed at detecting asymptomatic cases in addition to symptomatic cases is critical for disease control
with the existence of asymptomatic cases. Additionally, our study contributes to this body of literature a novel exploration of
the role of contact tracing and self-testing and the interactions between the two in infectious disease control and how network
structure, or the lack thereof, impacts the efficacy of testing and tracing. Importantly, we show that the willingness to self-report
and the process of contacts getting traced each are important to the efficacy of contact tracing. This emphasizes that educating
people on the importance of getting tested when initial symptoms begin or when a possible exposure has occurred is critical
to control an emerging infectious disease outbreak. This is clearly of critical importance for policy makers though can be very
challenging when dealing with a wary public.

We have made a number of simplifying assumptions in the stochastic network model which may be interesting to relax. We
assumed perfectly accurate tests, complete compliance with quarantine while awaiting test results and with isolation if tested
positive. In reality we expect testing errors, and the accuracy levels may depend on the time for test results to be available.
Moreover, this trade-off between accuracy and wait-time may be influenced by the levels of failure to comply with isolation and
quarantine protocols. A more detailed model of the tracing process that includes capacity limits on the total number of contacts
that can be traced at a given time may provide more insight into the cost-benefit analysis for the optimal usage of resources. We
also did not include surveillance or mandatory testing, which may allow for earlier initiation of contact tracing, but at the cost
of testing the population at large instead of only those closest to infected individuals. We assumed throughout a fixed ratio of
6:1 symptomatic to asymptomatic cases. This choice was made to explore a scenario where a relatively small fraction of cases are
asymptomatic, and we expect that a higher probability of asymptomatic cases would increase the impact that contact tracing can
have relative to self-reporting, and would be interesting to explore further in future work. Furthermore, We modeled contacts
among individuals with an idealized random network structure because of its simplicity and flexibility, but a network that more
closely mimics actual human contact structure within a population may have different trends. Other networks based on models
of societal structure and predicted human behavior could be explored as has been done by Eames et al. (2012); Kucharski et al.
(2018); Della Rossa et al. (2020). Efforts to directly estimate the contact structure from mobility data may also inform improved
models for network structure and suggest how it changes in different scenarios (Wesolowski et al., 2016; Kishore et al., 2020;
Buckee et al., 2020).

The discrepancy between the predictions of the stochastic network model and the ODE model in our work highlights the
importance of model choice when conducting studies especially in cases for making policy. The network model, while it includes
more details of interactions between individuals, is significantly more complex than the ODE model and requires more compu-
tational resources to explore. On the other hand, the ODE model does not capture details of the structure of contacts between
individuals, and thus may miss key insights into the effectiveness of contact tracing at controlling an epidemic. We show some
contradicting conclusions based on the type of model used. These include the presence of a minimum threshold for contact
tracing for outbreaks in only the network model. The length of the epidemic, the number of people infected, and the number
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of tests used have a reverse quality with respect to the contact tracing rate between the models. These are relevant quantities in
terms of decision making during pandemics.

Advances in the development of ODE models that capture more details about the influence of network structure may pro-
vide a middle ground between existing ODE models and more complex network models (Kiss et al., 2017; Jardón-Kojakhmetov
et al., 2021). Such mean-field models are based on higher-order moment closures, and explicitly track mean levels of edge types
(where the type is determined by which states the edge connects) in addition to the mean levels of each state. This kind of ex-
tension could be incorporated into a model for contact tracing where the overall tracing rate at any given time is proportional
to the number of edges where one node is in quarantine. It would allow for an ODE model that can capture some aspects of the
contact network structure, such as the impact of the rewiring parameter p. This comes at the expense of tracking additional state
variables related to how the network is connected. Still though, these models would likely not highlight the importance of net-
work structure and interactions at the individual level, and these models remain preferable to ODE approximations, particularly
when the population being studied is relatively small.
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