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ABSTRACT

We construct an SIR-type model for COVID-19, incorporating as a parameter the
susceptible individuals' cautiousness level. We determine the model's basic repro-
duction number, study the stability of the equilibria analytically, and perform a sen-
sitivity analysis to con�rm the signi�cance of the cautiousness level. Fixing speci�c
values for all other parameters, we study numerically the model's dynamics as the
cautiousness level varies, revealing backward transcritical, Hopf, and saddle-node
bifurcations of equilibria, as well as homoclinic and fold bifurcations of limit cycles
with the aid of AUTO. Considering some key events a�ecting the pandemic in In-
donesia, we design a scenario in which the cautiousness level varies over time, and
show that the model exhibits a hysteresis, whereby, a slight cautiousness decrease
could bring a disease-free state to endemic, and this is reversible only by a drastic
cautiousness increase, thereby mathematically justifying the importance of a high
cautiousness level for resolving the pandemic.
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1 Introduction

Since December 2019, the Coronavirus Disease 2019, popularly known as COVID-19, has spread, reportedly from a seafood
market in Wuhan, People’s Republic of China, to the entire world, with its impact persisting to the present (Saxena, 2020). On
March 11, 2020, the World Health Organization (WHO) declared a pandemic (Saxena, 2020), and as of February 6, 2022, there
were over 392 million reported COVID-19 cases, resulting in over 5.7 million fatalities (WHO, 8 February 2022).

A plethora of mathematical models has been used to study the spread of the disease. The Kermack-McKendrick SIR model
(Kermack & McKendrick, 1927), one of the simplest and best-known compartmental models for epidemics, assumes that the
population size is constant, and that, at any given time, each individual belongs to exactly one of the following compartments
which indicates the individual’s status: susceptible (S), infected (I), and recovered (R), hence the model’s name (Figure 1). De-
noting by S = S (t), I = I (t), and R = R(t), respectively, the number of susceptible, infected, and recovered individuals at time
t ⩾ 0, the model reads

dS
dt

= −βSI , dI
dt

= βSI − αI ,
dR
dt

= αI .

Here it is assumed that the population transfer from S to I—the disease incidence—occurs at a rate which is proportional to
the number of possible contacts of susceptible and infected individuals: βSI for some β > 0. On the other hand, the transfer
from I to R—the recovery—is assumed to occur at a rate proportional to the number of infected individuals: αI for some α > 0
(Figure 1).

The Kermack-McKendrick SIR model serves as a basis for more realistic SIR-type models. The latter result from var-
ious modifications, including the removal of the constant population size assumption (which implies the incorporation of
birth/entrance and death/exit rates), as well as the use of alternative forms of incidence and recovery rates.

The incidence rate βSI used in the Kermack-McKendrick SIR model is bilinear: it increases linearly to infinity with S and
with I . In reality, as S and/or I become large, the incidence rate could experience inhibition, due to some change in the behaviour
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Figure 1: The compartment diagram of the SIR model.

of susceptible individuals: they could become increasingly cautious of the spreading disease, and thus increasingly self-protective,
reducing incidence. To model such a behaviour, one could employ incidence rates of the form pSI/f (S, I), where f is a function
which increases with S and with I . The simplest non-trivial forms are those in which f is univariate and linear with a non-zero
constant term: f (S, I) = q + rI or f (S, I) = q + rS, where q ≠ 0, which, after the rescaling β = p/q and γ = r/q, result in the
so-called saturated incidence rates

Inc1 (S, I) =
βSI

1 + γI
and Inc2 (S, I) =

βSI

1 + γS
,

respectively. Both rates increase with S and with I . However, the rate Inc1 (S, I) saturates at (β/γ)S for large I and, since its
denominator depends on I , has been used to model the situation whereby susceptible individuals increase their cautiousness—
and thus self-protectiveness—as the number of infected individuals becomes large (Capasso & Serio, 1978; Zhang & Liu, 2008;
Zhou & Fan, 2012; Hu et al., 2012; Cui et al., 2017; Ghosh et al., 2019; Alshammari & Khan, 2021; Ajbar et al., 2021). By
contrast, its alternative Inc2 (S, I) (Wei & Chen, 2008; Zhang et al., 2008; Kar & Batabyal, 2011), saturates at (β/γ)I for large
S and has a denominator which is independent of I , thereby modelling the internal cautiousness of susceptible individuals, the
parameter γ measuring the level of this cautiousness. (Functions similar to Inc2 (S, I) have also been used to model the influence
of “awareness programs” on susceptible individuals’ cautiousness; see Greenhalgh et al. (2015); Dubey et al. (2016); Zuo et al.
(2015).)

The Kermack-McKendrick SIR model also uses a linear recovery rate: αI , which does not take into account possible decel-
eration due to, e.g., the suboptimisation of hospital services. To take the latter into account, one could use recovery rates of the
form

Rec1 (I) = αI +
δI

ω + I
and Rec2 (I) =

αI

1 + ρI
.

Indeed, a well-accepted measure for the optimality of hospital services is the hospital bed-population ratio ω which has been
incorporated to a number of models (Shan & Zhu, 2014; Cui et al., 2017; Alshammari & Khan, 2021; Ajbar et al., 2021; Alqah-
tani, 2021) with recovery rates of the form Rec1 (I). Some other authors (Zhang & Liu, 2008; Zhou & Fan, 2012; Ghosh et al.,
2019) used the alternative form Rec2 (I), which, as I becomes large, increases and saturates at α/ρ, capturing the behaviour of
hospitals suboptimising services due to crowding. In populous countries, such as Indonesia, it is fitting to interpret the param-
eter ρ—whose large values imply low recovery rates—as the hospitals’ bed-occupancy rate (the number of hospitalised cases per
isolation bed; see WHO Indonesia (22 July 2020)); governments of such countries are struggling to maintain an ideal value of
this quantity to keep health services optimal, setting up makeshift hospitals (WHO Indonesia, 22 July 2020, 23 June 2021).

In this paper we propose a model for the spread of COVID-19 in a population which takes into account both the cau-
tiousness level of susceptible individuals and the hospitals’ bed-occupancy rate. The model is a compartmental, SIR-type model
constructed based on the following assumptions.

(i) At any given time, each individual in the population, according to their status, belongs to exactly one of the following
compartments: susceptible (S), infected (I), and recovered (R). We let S = S (t), I = I (t), and R = R(t) be, respectively,
the number of susceptible, infected, and recovered individuals at time t ⩾ 0, the dependence being differentiable. The
size of the population at time t is thus N (t) = S (t) + I (t) + R(t).

(ii) The rate of individuals entering the population—due to births and migrations—is a positive constant λ > 0, and
every newly-entered individual is susceptible. The rates of susceptible, infected, and recovered individuals exiting the
population—due to deaths—are µS,

(
µ + µ′

)
I , and µR, respectively, where µ, µ′ > 0. The presence of µ′ implies that

infected individuals have a higher death rate than susceptible and recovered individuals.

(iii) Susceptible individuals become infected at the rate Inc2 (S, I) = βSI/(1 + γS). Here, we assume, for interpretability, that
the cautiousness level γ of the susceptible individuals satisfies γ ∈ [0, 1], and that β > 0.

(iv) Infected individuals become recovered at the rate Rec2 (I) = αI/(1 + ρI). Here, we assume that ρ ∈ [0, 1], interpreting
this parameter as the hospitals’ bed-occupancy rate, and that α > 0.
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Figure 2: The compartment diagram of our model.

The above assumptions lead to the compartment diagram in Figure 2, and thus to the following model:

dS
dt

= λ − µS −
βSI

1 + γS
,

dI
dt

= −µI − µ′I +
βSI

1 + γS
− αI

1 + ρI
,

dR
dt

= −µR +
αI

1 + ρI
.

(1)

Adding these equations, one verifies that the population size N is not constant. We shall study this model over the domain

Ω ≔
{(
S (t), I (t),R(t)

)
∈ [0,∞)3 : 0 < S (t) + I (t) + R(t) ⩽ λ

µ , t ⩾ 0
}
.

Let us now describe the organisation and main findings of this paper. In the upcoming section 2, we study the model (1)
analytically. We first determine its disease-free equilibrium and basic reproduction number R0 (subsection 2.1). Of note is
the fact that R0 depends on the cautiousness level γ but not on the bed-occupancy rate ρ, meaning that, in an endemic state,
the governments’ effort of setting up increasingly many makeshift hospitals will never drive the system to a disease-free state
if the citizens are not adequately cautious about protecting themselves from being infected. We also determine the possible
numbers of its endemic equilibria (subsection 2.2), the linear stability of these equilibria and other dynamical properties of
the model (subsection 2.3), as well as the sensitivity index of the basic reproduction number with respect to each parameter
(subsection 2.4). The latter confirms quantitatively that γ is one of the parameters upon which R0 depends most sensitively.

In section 3, we fix a value for each of the parameters β, λ, µ, µ′, α, ρ and study the model (1) numerically as γ vary over its
domain, presenting the results in three subsections. In subsection 3.1, we show that the model exhibits a backward transcritical
bifurcation at R0 = 1, a saddle-node bifurcation, and a supercritical Hopf bifurcation whereby a stable endemic equilibrium
becomes unstable and surrounded by a stable limit cycle. To discover the limit cycle’s bifurcations, we use the AUTO software
(Doedel, 1997), revealing a homoclinic bifurcation and a fold bifurcation of limit cycles. These are discussed in subsection 3.2,
where we also present plots of all qualitatively different orbital behaviours of the model corresponding to different values of
γ (Figure 5). In subsection 3.3, we design a scenario whereby γ changes as a piecewise-constant function of t, and display the
behaviour of I resulting from these changes. We demonstrate that the model exhibits a hysteresis: in a near-threshold disease-free
state, a small decrease of γ could lead to an endemic state which is subsequently recoverable only by a large increase of γ. For the
specified parameter values, γ needs to exceed 0.35 in order to guarantee the recovery.

In the final section 4, we conclude from our model that the pandemic cannot be resolved merely by increasing the hospitals’
bed-occupancy rate; a serious effort towards a high cautiousness level of susceptible individuals is necessary. We also discuss
avenues for further investigation.

2 Analytic Results

Although the population size N is not constant, the first two equations in our model (1) do not depend on the third one; this
means that the analysis of the model can be performed by considering only its first two equations,

dS
dt

= λ − µS −
βSI

1 + γS
,

dI
dt

= −µI − µ′I +
βSI

1 + γS
− αI

1 + ρI
,

(2)
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over a domain Ω′ ⊆ R2 which is the projection of Ω on the SI -plane. In this section, we present a qualitative analysis of the
reduced model (2). This consists of, firstly, a computation of the model’s disease-free equilibrium and basic reproduction num-
ber: the threshold parameter R0 for which the disease-free equilibrium is stable if R0 < 1 and unstable if R0 > 1; this will be
computed using the next-generation matrix approach (Diekmann et al., 1990; van den Driessche & Watmough, 2002) (subsec-
tion 2.1). We also determine the possible numbers of the model’s endemic equilibria, using Descartes’ rule of signs (Meserve,
1981) (subsection 2.2). Using tools from dynamical systems and bifurcation theory (see Kuznetsov (1998); Martcheva (2015);
Robinson (2012); Strogatz (2018) for background), we next determine and study the linear stability of these equilibria, whether
the transcritical bifurcation occurring at R0 = 1 is forward or backward, and a property of a periodic orbit of our model (sub-
section 2.3). Finally, using the sensitivity indices of the basic reproduction number (Chitnis et al., 2008), we determine the
parameters upon which the basic reproduction number depends most sensitively (subsection 2.4).

2.1 Disease-free equilibrium and basic reproduction number

Letting e′0 = (S0, 0) ∈ Ω′ be the disease-free equilibrium of the reduced model (2) corresponding to the disease-free equilibrium
e0 ∈ Ω of the original model (1), solving dS0/dt = 0 immediately gives S0 = λ/µ. Thus,

e′0 =
(
λ

µ
, 0

)
.

Since the next-generation matrix (van den Driessche & Watmough, 2002, page 33) for (2) is the 1 × 1 matrix FV−1, where

F =

[
𝜕

𝜕I

(
βSI

1 + γS

)����
(S,I )=e′0

]
and V =

[
𝜕

𝜕I

(
µI + µ′I +

αI

1 + ρI

)����
(S,I )=e′0

]
,

its only entry is the model’s basic reproduction number:

R0 =
βλ

(µ + γλ)
(
µ + µ′ + α

) . (3)

Notice that R0 depends on γ (as well as on β, λ, µ, µ′, and α), but not on ρ. Thus, the value of R0 cannot be suppressed by
merely reducing the hospitals’ bed-occupancy rate. Ways to suppress R0 are the following.

(i) Seek to achieveλ = 0. In practice, this means the population’s government declaring a total lockdown: outside individuals
are absolutely prevented from entering the population. While such a policy is effective to eradicate the disease, it could
lead to a substantial damage in the economic sector.

(ii) Seek to achieve β = 0, i.e., an absolute prevention of interindividual interactions. Again, this eradicates the disease, but
jeopardises the economy.

(iii) Seek to increase α, i.e., to accelerate the treatment of infected individuals. Although possible, this is largely constrained by
the limitedness of medical resources.

Since we clearly do not wish to increase µ or µ′, only one more option is available.

(iv) Seek to increase γ, i.e., the cautiousness of susceptible individuals.

In subsection 2.4, we shall confirm quantitatively that, for the values of parameters (8) used in our numerical simulations (sec-
tion 3), γ is one of the parameters upon which R0 depends most sensitively. Thus, governments of countries that are able to
increase the citizens’ cautiousness level (through, e.g., dissemination and enforcement of health protocols) have a reasonable
chance of success in resolving the pandemic.

2.2 Endemic equilibria

We now characterise and determine the number of the endemic equilibria of (2). Let N be the set of positive integers, and let
e′n = (Sn, In) ∈ Ω′, where n ∈ N, be an endemic equilibrium of (2) corresponding to an endemic equilibrium en ∈ Ω of (1).
The conditions dSn/dt = 0 and dIn/dt = 0 are equivalent to

λ − µSn −
βSnIn

1 + γSn
= 0 and − µIn − µ′In +

βSnIn

1 + γSn
− αIn
1 + ρIn

= 0,
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Table 1: Possible values of N for various values of R0 and a, b, c, d, assuming that b and c are non-zero.

R0 and d a b and c Possible values of N

R0 < 1 ⇔ d < 0

a < 0
b < 0 and c < 0 0

b > 0 or c > 0 0, 2

a > 0
b < 0 and c > 0 1, 3

b > 0 or c < 0 1

R0 = 1 ⇔ d = 0 a < 0
b < 0 and c < 0 0

c > 0 1

b > 0 and c < 0 2

R0 > 1 ⇔ d > 0 a < 0
b > 0 and c < 0 1, 3

b < 0 or c > 0 1

respectively. Adding these gives

Sn =
λ

µ
− In

[
α

µ(1 + ρIn)
+
µ + µ′

µ

]
, (4)

which, together with the condition dSn/dt = 0 and the fact that In ≠ 0, gives

aIn
3 + bIn

2 + cIn + d = 0, (5)

where

a ≔ ρ2
(
µ + µ′

)
[
(
µ + µ′

)
γ − β],

b ≔ ρ2 (µ + γλ)
[ (
µ + µ′ + α

) (
R0 − 1

)
+ α

]
+ ραβ + 2ρ

(
µ + µ′ + α

) [ (
µ + µ′

)
γ − β

]
,

c ≔ 2ρ(µ + γλ)
(
µ + µ′ + α

) (
R0 − 1

)
+

(
µ + µ′ + α

) [ (
µ + µ′

)
γ − β

]
+ γα

(
µ + µ′ + α

)
+ ρα(µ + γλ),

d ≔ (µ + γλ)
(
µ + µ′ + α

) (
R0 − 1

)
.

It is straightforward to see that

R0 < 1 if and only if d < 0,
R0 = 1 if and only if d = 0,
R0 > 1 if and only if d > 0;

that (
µ + µ′

)
γ − β < 0 if and only if a < 0,(

µ + µ′
)
γ − β > 0 if and only if a > 0;

and that

R0 ⩾ 1 implies a < 0.

By Descartes’ rule of signs (Meserve, 1981, Theorem 4.10), the number N of positive roots of (5), counting multiplicities, is
bounded above by the number of times the non-zero coefficients change sign, and differs from it by an even number. This gives
the possible values of N in various cases, presented in Table 1.

If a positive root In of (5) exists, the corresponding value of Sn obtained from (4) is non-negative (i.e., e′n ∈ Ω′) if and only
if

λ

µ
> In

[
α

µ
(
1 + ρIn

) + µ + µ′

µ

]
.
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2.3 Linear stability and bifurcation analysis

In this subsection, we first prove that the stability of the disease-free equilibrium is indeed determined by the basic reproduction
number (Theorem 2.1), and characterise the stability of the endemic equilibria (Theorem 2.3). Subsequently, we establish a
sufficient condition for the occurrence of forward and backward transcritical bifurcations (Theorem 2.4) and a property satisfied
by a periodic orbit of our model if it exists (Theorem 2.5).

A stability criterion of the disease-free equilibrium in terms of the basic reproduction number is derived using the standard
result that an equilibrium of a planar system is locally asymptotically stable if both eigenvalues of the system’s Jacobian evaluated
at that equilibrium have negative real parts, and unstable if at least one eigenvalue has a positive real part (Robinson, 2012,
Theorem 4.6). For completeness, we also use the term semistable in the situation whereby the one of the eigenvalues is zero and
the other is negative.

Theorem 2.1. The disease-free equilibrium e0 is locally asymptotically stable if R0 < 1, semistable if R0 = 1, and unstable if
R0 > 1.

Proof. The Jacobian of the model (2) evaluated at (S, I) = e′0, i.e.,

J0 =

(
−µ − βλ

µ+γλ

0 −µ − µ′ − α + βλ
µ+γλ

)
,

has two real eigenvalues:

−µ and
βλ − (µ + γλ)

(
µ + µ′ + α

)
µ + γλ

.

Since the former is negative, the disease-free equilibrium e0 is locally asymptotically stable if the latter is negative, i.e., R0 < 1, is
semistable if the latter is zero, i.e., R0 = 1, and is unstable (in fact, a saddle point) if latter is positive, i.e., R0 > 1. □

We shall make use of this theorem in subsection 3.1.
Next, we turn our attention to the stability of the endemic equilibria, which will be classified using the well-known trace-

determinant criterion of stability of equilibria of planar linear systems (Robinson, 2012, Theorem 4.3) and the Grobman-
Hartman theorem (Robinson, 2012, Theorem 12.10).

Lemma 2.2. Let n ∈ N, and let

Pn ≔ 2µ + µ′ +
α(

1 + ρIn
)2 +

βIn(
1 + γSn

)2 −
βSn

1 + γSn
,

Qn ≔ µ2 + µµ′ +
µα(

1 + ρIn
)2 +

(
µ + µ′

)
βIn(

1 + γSn
)2 +

βαIn(
1 + γSn

)2 (
1 + ρIn

)2 −
µβSn

1 + γSn
.

(6)

The following hold for the trivial equilibrium of the variational system of (2) near e′n.

(i) If Qn < 0, then the equilibrium is a saddle point, and hence unstable.

(ii) If Qn > 0 and Pn < 0, then the fixed point is unstable; it is an unstable node if Pn
2 − 4Qn > 0, a degenerate unstable node

if Pn
2 − 4Qn = 0, and an unstable focus if Pn

2 − 4Qn < 0.

(iii) If Qn > 0 and Pn > 0, then the equilibrium is asymptotically stable; it is a stable node if Pn
2 − 4Qn > 0, a degenerate

stable node if Pn
2 − 4Qn = 0, and a stable focus if Pn

2 − 4Qn < 0.

(iv) If Qn > 0 and Pn = 0, then the equilibrium is L-stable but not asymptotically stable.

(v) If Qn = 0, then the equilibrium is unstable if Pn < 0, and is L-stable but not asymptotically stable if Pn > 0.

Proof. The Jacobian of the model (2) evaluated at (S, I) = e′n is

Jn =
©­«
−µ − βIn

1+γSn +
βγSnIn

(1+γSn)2
− βSn

1+γSn
βIn

1+γSn −
βγSnIn

(1+γSn)2
−µ − µ′ + βSn

1+γSn −
α

1+ρIn +
ραIn

(1+ρIn)2
ª®¬ .

Since tr (Jn) = −Pn and det (Jn) = Qn by straightforward computation, the theorem is an immediate consequence of Theo-
rem 4.3 in Robinson (2012). □
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By the Grobman-Hartman theorem (Robinson, 2012, Theorem 12.10), the above lemma immediately implies the following
theorem concerning the type and stability of en.

Theorem 2.3. Let n ∈ N.

(i) If Qn < 0, then en is a saddle point, and hence unstable.

(ii) IfQn > 0 andPn < 0, then en is unstable; it is an unstable node ifPn
2−4Qn > 0, and an unstable focus if Pn

2−4Qn < 0.

(iii) If Qn > 0 and Pn > 0, then en is asymptotically stable; it is a stable node if Pn
2 − 4Qn > 0, and a stable focus if

Pn
2 − 4Qn < 0.

This theorem will also be applied in subsection 3.1.
In the case of R0 < 1, the disease-free equilibrium e0, being stable, may or may not be the only existing equilibrium of the

model (2). This depends on whether the model exhibits a forward or a backward transcritical bifurcation atR0 = 1, i.e., whether
𝜕In/𝜕R0 is positive or negative at

(
R0, In

)
= (1, 0) (Martcheva, 2015, section 7.5). In the case of a backward bifurcation, besides

the stable disease-free equilibrium, an unstable endemic equilibrium exists for R0 < 1. We derive sufficient conditions for these
bifurcations.

Theorem 2.4. At R0 = 1, the model (2) exhibits a forward bifurcation if

β <
µ
(
µ + µ′ + α

)3
αλ2ρ

,

and a backward bifurcation if

β >
µ
(
µ + µ′ + α

)3
αλ2ρ

.

Proof. From (3) one obtains

γ =
β

R0
(
µ + µ′ + α

) − µ

λ
.

Substituting this into (5) and differentiating both sides with respect to R0, one obtains that

𝜕In
𝜕R0

����
(R0,In)=(1,0)

=
βλ2

(
µ + µ′ + α

)
µ
(
µ + µ′ + α

)3 − αβλ2ρ
.

A forward (backward, respectively) bifurcation occurs at R0 = 1 if this quantity is positive (negative, respectively), proving the
theorem. □

Our final theorem is an application of Dulac criterion (Robinson, 2012, Theorem 6.11) to describe a property of a periodic
orbit of our reduced model (2) upon its existence: such an orbit must intersect a specific quadratic curve in S and I whose
formula depends on the model’s parameters. For a description of the many possible shapes of such a curve, see, e.g., Kesavan
(2015). For the values of parameters (8) used in section 3, the curve is a hyperbola.

Theorem 2.5. A periodic orbit of the model (2), if it exists, intersects the curve

ãI2 + b̃SI + c̃S + d̃I + ẽ = 0, (7)

where

ã ≔ −βρ, b̃ ≔ −4γµρ − 2γµ′ρ + 2βρ, d̃ ≔ γλρ − 3µρ − 2µ′ρ − β,
c̃ ≔ −αγ − 3γµ − γµ′ + β, ẽ ≔ γλ − α − 2µ − µ′.

Proof. For every (S, I) ∈ Ω′, let
g(S, I) ≔ (1 + γS) (1 + ρI),

and let f1 (S, I) and f2 (S, I) be the right-hand sides of the equations in (2). Direct computation shows that

𝜕 (g(S, I)f1 (S, I))
𝜕S

+
𝜕 (g(S, I)f2 (S, I))

𝜕I
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Table 2: Values of the sensitivity indices of the basic reproduction number of our model for β = 0.05, λ = 10, µ = 0.01,
µ′ = 0.1, α = 0.2, and γ as in the first row.

Sensitivity index
γ = 0.3497, γ = 0.1,

R0 = 0.4599 < 1 R0 = 1.5970 > 1

Υ
R0
β

1 1

Υ
R0
λ

0.002851 0.009901

Υ
R0
γ −0.99715 −0.9901

Υ
R0
µ −0.03511 −0.04216

Υ
R0
µ′ −0.32258 −0.32258

Υ
R0
α −0.64516 −0.64516

is precisely the left-hand side of (7). By Dulac criterion, this means that there cannot be any periodic orbit contained entirely in{
(S, I) ∈ Ω′ : ãI2 + b̃SI + c̃S + d̃I + ẽ < 0

}
or entirely in {

(S, I) ∈ Ω′ : ãI2 + b̃SI + c̃S + d̃I + ẽ > 0
}
.

The theorem follows. □

We will illustrate this theorem for the cases considered in section 3 in which periodic orbits exist.

2.4 Sensitivity analysis

In subsection 2.1 we have discussed how the value of R0 can be suppressed by changing the values of the parameters on which
it depends: β, λ, γ, µ, µ′, and α. Let us now discuss a quantity which measures the relative impact of each of these parameters on
R0. The sensitivity index of the basic reproduction number R0 to a parameter p ∈

{
β, λ, γ, µ, µ′, α

}
is given by

Υ
R0
p ≔

𝜕R0

𝜕p
·

p

R0
,

i.e., the ratio of the relative change inR0 to the relative change in p, assuming the required differentiability (Chitnis et al., 2008).
Direct computation gives

Υ
R0
β

= 1, Υ
R0
γ = −

γλ

µ + γλ
, Υ

R0
µ′ = −

µ′

µ + µ′ + α
,

Υ
R0
λ

=
µ

µ + γλ
, Υ

R0
µ = −

µ(2µ + µ′ + α + γλ)(
µ + µ′ + α

)
(µ + γλ)

, Υ
R0
α = − α

µ + µ′ + α
.

Notice that ΥR0
β

, ΥR0
µ′ , and Υ

R0
α are independent of γ.

For the values of parameters (8) used on our numerical simulations (section 3), the values of these indices in the cases of
γ = 0.3497 (where R0 < 1) and γ = 0.1 (where R0 > 1) are presented in Table 2. In both cases we can see that the parameters
most sensitive to R0, i.e., those with the largest sensitivity indices in absolute value, are β and γ. Indeed, a 1% increase in the
parameter β (γ, respectively) results in a 1% increase (0.997% decrease, respectively) in the basic reproduction number. This
confirms that the governments’ effort to resolve the pandemic by increasing the citizens’ cautiousness level is reasonable (cf.
subsection 2.1).
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3 Numerical Results

In this section, we present the results of our numerical explorations. These are carried out using the following parameter values,
which, as we shall see, are chosen to expose the rich dynamical behaviour of the model as γ varies over its domain1:

β = 0.05, λ = 10, µ = 0.01, µ′ = 0.1, α = 0.2, and ρ = 0.1. (8)

We divide the presentation into three subsections. In the first subsection, we analyse the model by applying our analytic results
in section 2; this results in the finding of a backward transcritical bifurcation at γ ≈ 0.1602903226, a Hopf bifurcation at
γ ≈ 0.3496375754, and a saddle-node bifurcation at γ ≈ 0.3569024925. In the second subsection, we use the software AUTO
to discover bifurcations which are undetectable analytically: a homoclinic bifurcation at γ ≈ 0.3498971211 and a fold bifurcation
of a limit cycle at γ ≈ 0.3500585184. In the final subsection, we construct a scenario whereby the susceptible individuals’
cautiousness level γ varies over time, displaying the behaviour of I over time and showing that our model exhibits a hysteresis.

3.1 Use of analytic results

For the values of parameters in (8), the basic reproduction number (3) of our model (1) reads

R0 =
5000

31 + 31000γ
, (9)

which decreases monotonically with γ, and our disease-free equilibrium is e0 = (λ/µ, 0, 0) = (1000, 0, 0). This equilibrium
exists for all values of γ, and is stable if γ > γ (TR) , semistable if γ = γ (TR) , and unstable if γ < γ (TR) , where γ (TR) = 4969/31000
(Theorem 2.1). The coefficients of (5) are

a =
121

1000000
γ − 11

200000


< 0, if γ < γ (a) ;
= 0, if γ = γ (a) ;
> 0, if γ > γ (a) ,

b = − 209
50000

γ +
2889

1000000


> 0, if γ < γ (b) ;
= 0, if γ = γ (b) ;
< 0, if γ > γ (b) ,

c = − 3239
10000

γ +
1051
12500


> 0, if γ < γ (c) ;
= 0, if γ = γ (c) ;
< 0, if γ > γ (c) ,

d = −31
10

γ +
4969
10000


> 0, if γ < γ (TR) ;
= 0, if γ = γ (TR) ;
< 0, if γ > γ (TR) ,

(10)

where
γ (a) =

5
11
, γ (b) =

2889
4180

, and γ (c) =
4204
16195

satisfy
γ (TR) < γ (c) < γ (a) < γ (b) .

By Descartes’ rule of signs (cf. subsection 2.2), this implies that

N ∈
{
{1}, if 0 ⩽ γ ⩽ γ (TR) or γ (a) ⩽ γ ⩽ 1;
{0, 2}, if γ (TR) < γ < γ (a) .

To find the specific value ofN in each possible case, we perform explicit computation: substituting (10) into (5) and solving
for γ give

γ =
(In + 10)

(
55In2 − 3439In − 49690

)
(11In + 310)

(
11In2 − 690In − 10000

) . (11)

Notice in particular the singularity

I (s) =
345
11

+
5
11
√
9161,

which is the larger root of the quadratic polynomial 11In2 − 690In − 10000.
1Certainly, the parameter values can also be chosen or estimated in order to describe the epidemic situation in a particular region. Indeed, we have used the
same model to describe the situation in Jakarta over a specific period, whereby the values of λ, µ, µ′, and ρ are adopted from Aldila et al. (2021); Ministry of
Health of the Republic of Indonesia, while those of α and β are estimated via discretisation and the so-called L-BFGS-B algorithm (Fei et al., 2014) using the
data provided by the Johns Hopkins University & Medicine Coronavirus Resource Center; see Yong et al. (2022) for details. The same algorithm can also be
used to estimate γ.



12 B. YONG, L. OWEN, J. HOSEANA

γ (TR) γ (HB) γ (SN)

I (SN)
I (HB)
I (s)

I0

I2

I1

γ

In

R
(SN)

0 R
(HB)

0
1

I (SN)
I (HB)
I (s)

I0

I2

I1

R0

In

Figure 3: On the left panel, plot of points
(
γ, In

)
∈

[
0, γ (SN) ] × [

0, I (s)
)

satisfying (11) (red) and the line I0 = 0 representing
the disease-free equilibrium (blue). On the right panel, plot of points

(
R0, In

)
satisfying (13) (red) and the line I0 = 0 repre-

senting the disease-free equilibrium (blue). Solid and dashed lines indicate stability and instability, respectively.

Next, substituting (8) into (4) gives

Sn = − 11In2 − 690In − 10000
In + 10

{
> 0, if In < I (s) ;
⩽ 0, if In ⩾ I (s) ,

(12)

meaning that the endemic equilibrium exists if and only if In < I (s) . Consequently, we restrict our attention the region[
0, γ (SN) ] × [

0, I (s)
)
, where

(
I (SN) , γ (SN) ) ≈ (65.1955050073, 0.3569024925) is the maximum point of the right-hand side

of (11) for 0 ⩽ In < I (s) . The bifurcation diagram consisting of points
(
γ, In

)
in this region satisfying (11) is plotted in Figure 3

(left).
The stabilities of the endemic equilibria displayed in Figure 3 (left) are obtained as follows. Substituting (11) and (12) into

(6), one obtains Pn, Qn, and Pn
2 − 4Qn as functions of In and reveals that, for 0 < In < I (s) ,

Qn


< 0, if 0 < In < I (SN) ;
= 0, if In = I (SN) ;
> 0, if I (SN) < In < I (s)

and Pn
2 − 4Qn



> 0, if 0 < In < I (r) ;
= 0, if In = I (r) ;
< 0, if I (r) < In < I (q) ;
= 0, if In = I (q) ;
> 0, if I (q) < In < I (s) ;

and, for I (SN) ⩽ In < I (s) ,

Pn


< 0, if I (SN) ⩽ In < I (HB) ;
= 0, if In = I (HB) ;
> 0, if I (HB) < In < I (s) ,

where I (r) ≈ 65.6956172723, I (q) ≈ 74.2040760587, and I (HB) ≈ 70.7209428218 satisfy

0 < I (SN) < I (r) < I (HB) < I (q) < I (s) .

Letting the pair
(
I (HB) , γ (HB) ) satisfy (11), we have γ (HB) ≈ 0.3496375754. These suffice to deduce the stability of our endemic

equilibria as shown in Figure 3 (left), using Theorem 2.3:

• The equilibrium e1, existing for 0 ⩽ γ ⩽ γ (SN) , is locally asymptotically stable for 0 ⩽ γ < γ (HB) and unstable2 for
γ (HB) < γ ⩽ γ (SN) (coinciding with e2 for γ = γ (SN) ).

2The equilibrium e′1 of (2) is an unstable focus for γ (HB) < γ < γ (r) and an unstable node for γ (r) < γ < γ (SN) , where γ (r) ≈ 0.3568741376 is such that the
pair

(
I (r) , γ (r)

)
satisfies (11).
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• The equilibrium e2, existing for γ (TR) ⩽ γ ⩽ γ (SN) , is semistable (coinciding with e0) for γ = γ (TR) , and unstable3 for
γ (TR) < γ ⩽ γ (SN) (coinciding with e1 for γ = γ (SN) ).

Therefore, at γ = γ (SN) , a saddle-node bifurcation (Strogatz, 2018, section 8.1) occurs: the two unstable endemic equilibria
e1 and e2 approach each other, coalesce, and disappear. At γ = γ (TR) , our model undergoes a transcritical bifurcation (Strogatz,
2018, section 8.1): the disease-free equilibrium e0 and an appearing endemic equilibrium e2 exchange stability. Since the unstable
endemic equilibrium e2 exists for

��γ − γ (TR) �� small and γ > γ (TR) (Figure 3 (left)), we can see that the transcritical bifurcation
is backward. This is agrees with the fact that

µ
(
µ + µ′ + α

)3
αλ2ρ

=
29791

200000000
< β,

as prescribed by Theorem 2.4. For a diagram on the R0In-plane, we first let

R (SN)
0 =

5000
31 + 31000γ (SN) ≈ 0.4506543710

and
R (HB)

0 =
5000

31 + 31000γ (HB) ≈ 0.4599915523.

From (9) we obtain

γ =
5000 − 31R0

31000R0
.

Substituting this into (10), and then (10) into (5), gives

R0 =
5000

(
121In3 − 4180In2 − 323900In − 3100000

)
31

(
55121In3 − 2893180In2 − 84403900In − 500000000

) . (13)

The bifurcation diagram consisting of points
(
R0, In

)
satisfying this equation is plotted in Figure 3 (right), showing that there

are two endemic equilibria e1, e2 for R (SN)
0 < R0 < 1 and one endemic equilibrium e1 for R0 ⩾ 1.

Next, for n = 1, substituting (11) and (12) into the first equation in (6), one obtains an expression for P1 in terms of I1.
Differentiating this with respect to I1 and evaluating the result at I1 = I (HB) gives

𝜕P1

𝜕I1

����
I1=I (HB)

≈ 0.0059945065.

On the other hand, differentiating the right-hand side of (11) with respect to I1 and evaluating the result at I1 = I (HB) gives

𝜕γ

𝜕I1

����
I1=I (HB)

≈ −0.0043073268.

The derivative of the common real part of the eigenvalues of the equilibrium e′1 of (2), namely−P1/2, with respect to γ, satisfies

𝜕 (−P1/2)
𝜕γ

=
𝜕 (−P1/2)

𝜕I1
· 𝜕I1
𝜕γ

= − 1
2
· 𝜕P1

𝜕I1
· 1
𝜕γ/𝜕I1

;

its value at γ = γ (HB) is thus positive. Since P1 = 0 and Q1 ≠ 0 at γ = γ (HB) , this implies that our model undergoes a
supercritical Hopf bifurcation (Robinson, 2012, Theorem 6.6) at γ = γ (HB) : the endemic equilibrium e1 changes from a stable
equilibrium (for

��γ − γ (HB) �� small and γ < γ (HB) ) into an unstable focus surrounded by a stable limit cycle (for
��γ − γ (HB) �� small

and γ > γ (HB) ).
However, neither the cycle’s equation, nor its behaviour as γ is increased, is easy to obtain analytically. For this reason, we

resort to a more sophisticated computer assistance. In the next subsection, we use AUTO, a numerical continuation and bifur-
cation software for ordinary differential equations, to carry out further explorations in this direction, revealing two bifurcations
which have not been found analytically.

3The equilibrium e′2 of (2) is a saddle point for γ (TR) < γ < γ (SN) .
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Figure 4: The periodic orbits’ periods against the parameter γ.

Table 3: Number and stability of disease-free equilibrium, endemic equilibria, and limit cycles of our model for all possible
values of γ.

Case Range of γ
Number and stability of

Disease-free equilibrium Endemic equilibria Periodic orbits

I 0 ⩽ γ < γ (TR) 1 unstable (e0) 1 stable (e1) 0

II γ = γ (TR) 1 semistable (e0) 1 stable (e1), 1 semistable (e2) 0

III γ (TR) < γ ⩽ γ (HB)

1 stable (e0)

1 stable (e1), 1 unstable (e2) 0

IV γ (HB) < γ < γ (HM)

1 unstable (e1), 1 unstable (e2)

1 stable

V γ = γ (HM) 1 stable, 1 homoclinic orbit

VI γ (HM) < γ < γ (FLC) 1 stable, 1 unstable

VII γ = γ (FLC) 1 semistable

VIII γ (FLC) < γ < γ (SN) 0

IX γ = γ (SN) 1 unstable (e1 = e2) 0

X γ (SN) < γ ⩽ 1 0 0

3.2 Use of AUTO

For the parameter values in (8) and γ = 0.1, we first compute the endemic equilibrium e1. Using AUTO, we then follow
this equilibrium as we vary γ. Three bifurcations are found: a transcritical bifurcation at γ = γ (TR) , a Hopf bifurcation at
γ = γ (HB) , and a saddle node bifurcation at γ = γ (SN) , as expected. From γ = γ (HB) , we follow a periodic solution and
obtain a plot of the period of the model’s periodic orbits versus γ (Figure 4). The plot reveals the existence of two new critical
values, γ (HM) ≈ 0.3498971211 and γ (FLC) ≈ 0.3500585184, where our model undergoes a homoclinic bifurcation and a fold
bifurcation of a limit cycle, respectively. A complete summary of the number and stability of our model’s equilibria and periodic
orbits for all possible values of γ is presented in Table 3.

In each of the ten cases considered in Table 3, we have generated a phase portrait of our model (1), simulating and plotting
in the SIR-space orbits corresponding to a number of initial conditions. The results are presented in Figure 5, which we now
describe. We begin with small values of γ. In cases I and II, 0 ⩽ γ < γ (TR) and γ = γ (TR) , respectively, we can see that
orbits approach the only stable equilibrium: the endemic equilibrium e1 (panels (a) and (b)). For γ > γ (TR) , the disease-free
equilibrium e0 is also stable. In case III, therefore, orbits approach either e1 or e0 (panel (c)).

In cases IV to VIII, γ (HB) < γ < γ (SN) , both endemic equilibria are unstable. In case IV, orbits approach either e0 or
the stable limit cycle (panel (d)); to add clarity we also provide a magnification of the plot in panel (d) near this limit cycle
(panel (e)). In case V, γ = γ (HM) , a homoclinic orbit is present around the stable limit cycle as a separatrix: orbits corresponding
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to initial conditions lying inside (outside, respectively) approach the limit cycle (e0, respectively) (panels (f) and (g)). In case VI,
γ (HM) < γ < γ (FLC) , the orbital behaviour is the same, except that the separatrix is now an unstable limit cycle (panels (h)
and (i)). In case VII, γ = γ (FLC) , the two limit cycles coalesce and become a single semistable limit cycle which is approached
by orbits corresponding to initial conditions inside it, while orbits corresponding to initial conditions outside it approaches e0
(panels (j) and (k)). In case VIII, γ (FLC) < γ < γ (SN) , no limit cycle exists; orbits approach e0 (panel (l)).

In case IX, the two endemic equilibria coalesce and become a single unstable endemic equilibrium, and orbits approach the
disease-free equilibrium e0 (panel (m)). In case X, we have the same orbital behaviour, but with no existing endemic equilibria
(panel (n)).

In all cases whereby periodic orbits exist (IV to VII), in the magnified plots (panels (e), (g), (i), (k)) we plot in light blue the
projections of the periodic orbits on the SI -plane, confirming that these orbits indeed intersect the quadratic curves specified in
Theorem 2.5 which are plotted in magenta.

3.3 Varying cautiousness level

To conclude our numerical analysis, let us simulate a scenario whereby, in the equilibrium state, the number I (t) of infected
individuals changes over time t as a result of the susceptible individuals’ cautiousness level γ(t) changing over time t. To this
end, we first need to choose a specific function γ of t. We assume that this function is piecewise-constant for simplicity, and
construct its branches to accomplish three aims:

(i) to expose the hysteresis exhibited by our model,

(ii) to include in the scenario most of the qualitatively different orbital behaviours of our model as displayed in Figure 5, and

(iii) to represent, to a certain degree, some actual key events occurring between December 2019 and July 2021 that have affected
the spread of COVID-19 in Indonesia.

The construction is described in Table 4. A plot of γ(t) versus t is shown in Figure 6 (top).
Using the initial condition (S0, I0,R0) = (100, 0.001, 0), we obtain the plot of I (t) versus t displayed in Figure 6 (bottom).

Let us now describe and interpret this plot biologically, and see that our model undergoes a hysteresis along the cycle plotted in
Figure 7.

The disease-free beginning

First, we consider the period 0 ⩽ t < 200. We begin with I (0) = 0.001, essentially meaning that no individual in the system
is initially infected, and assume that the susceptible individuals have a moderate cautiousness level: γ(t) = 0.3 (case III in
Table 3). Consequently, the disease-free equilibrium is stable, attracting the system (Figure 5 (c)), making it remain disease-free
throughout the period. In Figure 7, the system’s current status is represented by point 1.

The start of the pandemic

For 200 ⩽ t < 600, we assume that individuals have become less cautious: γ(t) = 0.1 < γ (TR) (case I in Table 3). For such a
low cautiousness level, the disease-free equilibrium is unstable. The disease thus enters the system, quickly driving the system to
the stable endemic equilibrium (Figure 5 (a)). In Figure 7, the system is now at point 2.

The early e�ort for recovery

Next, we consider the period 600 ⩽ t < 3600. We assume that, for 600 ⩽ t < 800, the cautiousness level is restored to its value
before the start of the pandemic (in fact, slightly exceeding it): γ(t) = 0.33 (case III in Table 3). This restoration, although results
in a slight decrease in I (t), does not suffice to bring the system back to the disease-free equilibrium. Indeed, for this value of γ(t)
our system is bistable: not only the disease-free equilibrium, but also the endemic equilibrium the system is currently in the
vicinity of, are both present and stable (Figure 5 (c)). In Figure 7, the system’s status is now represented by point 3. The value of
γ(t) during the remaining period 800 ⩽ t < 3600, albeit changing, is within the range of case III in Table 3; thus the changes do
not result in a qualitatively different orbital behaviour. In order to bring the system back to the disease-free equilibrium, effort
must be made to further increase the cautiousness level: γ(t) must exceed γ (FLC) to achieve a situation whereby the disease-free
equilibrium is the only attractor (cases VIII to X in Table 3).
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(a) Case I: γ = 0.1 (b) Case II: γ = γ (TR) (c) Case III: γ = 0.3

(d) Case IV: γ = 0.3497 (e) Case IV: γ = 0.3497 (magnified) (f) Case V: γ = γ (HM)

(g) Case V: γ = γ (HM) (magnified) (h) Case VI: γ = 0.35 (i) Case VI: γ = 0.35 (magnified)

(j) Case VII: γ = γ (FLC) (k) Case VII: γ = γ (FLC) (magnified) (l) Case VIII: γ = 0.353

(m) Case IX: γ = γ (SN) (n) Case X: γ = 0.36

Figure 5: Phase portraits of the model (1) in various cases considered in Table 3.
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Table 4: Constructing a piecewise-constant function γ of t for a simulation, in view of some events affecting the spread of
COVID-19 in Indonesia between December 2019 and July 2021.

Time Interval Range of t Events Value of γ(t) Case

Dec 2019 – Jan 2020 0 ⩽ t < 200
Panic began as the world’s first COVID-19 case
was recorded in China (Saxena, 2020; WHO
Indonesia, 27 March 2020).

0.3 III

Jan 2020 – Mar 2020 200 ⩽ t < 600
Government urged citizens not to panic (Desk,
2020) and provided incentives for foreign
visitors, boosting tourism (Gorbiano, 2020).

0.1 I

Mar 2020 – Apr 2020 600 ⩽ t < 800

Indonesia’s first COVID-19 case was recorded
(WHO Indonesia, 27 March 2020), the
large-scale social restrictions (PSBB) were
announced (WHO Indonesia, 9 April 2020),
and the disease spread across all 34 provinces
(WHO Indonesia, 16 April 2020).

0.33

III

Apr 2020 – Jun 2020 800 ⩽ t < 1200
Government banned mudik (the Eid al-Fitr
homecoming of migrant workers), albeit not
fully obeyed (WHO Indonesia, 16 April 2020).

0.32

Jun 2020 – Sep 2020 1200 ⩽ t < 1800

Government of Jakarta announced a gradual
transition from PSBB to ‘new normal’,
restimulating citizens’ mobility (WHO
Indonesia, 10 June 2020).

0.31

Sep 2020 – Oct 2020 1800 ⩽ t < 2000 Government of Jakarta reimposed PSBB (WHO
Indonesia, 16 September 2020).

0.315

Oct 2020 – Dec 2020 2000 ⩽ t < 2400
Government of Jakarta relaxed PSBB,
introducing ‘transitional PSBB’ (WHO
Indonesia, 14 October 2020).

0.305

Dec 2020 – Feb 2021 2400 ⩽ t < 2800
A new highest weekly incidence was recorded
following Christmas holidays (WHO Indonesia,
20 January 2021).

0.32

Feb 2021 – Apr 2021 2800 ⩽ t < 3200
Government announced micro-level restrictions
on community activities (micro-level PPKM)
(WHO Indonesia, 10 February 2021).

0.31

Apr 2021 – May 2021 3200 ⩽ t < 3400 Citizens ignored the government’s second
mudik ban (Syakriah et al., 2021).

0.305

May 2021 – Jun 2021 3400 ⩽ t < 3600

A surge in the number of COVID-19 cases and
clusters of COVID-19 infection were recorded
following Eid al-Fitr holidays (WHO Indonesia,
2 June 2021).

0.34

Jun 2021 – Aug 2021 3600 ⩽ t < 4000
Government announced emergency restrictions
on community activities (emergency PPKM)
(WHO Indonesia, 7 July 2021).

0.3497 IV

Aug 2021 – Sep 2021 4000 ⩽ t < 4200

Government rewarned the public to strictly
adhere to health protocols, as the Delta variant
of the virus was reported in 24 of 34 provinces
(WHO Indonesia, 4 August 2021).

0.35 VI
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Figure 6: Plots of γ(t) versus t (top), and I (t) versus t with a magnification in the region [3200, 4200] × [65, 78] (bottom).
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Figure 7: The hysteresis cycle exhibited by our model (1).

The subsequent e�ort

In the period 3600 ⩽ t < 4200, we assume an increased cautiousness level: γ(t) = 0.3497 ∈
(
γ (HB) , γ (HM) ) for 3600 ⩽ t <

4000 (case IV in Table 3) and γ(t) = 0.35 ∈
(
γ (HM) , γ (FLC) ) for 4000 ⩽ t < 4200 (case VI in Table 3). For these values of

γ(t), the system, being previously in the vicinity of the stable endemic equilibrium, now circulates around a stable periodic orbit
(Figure 5 (d), (e), (h), (i)). The decreasing parts of the resulting oscillations, in reality, may suggest that the pandemic is settling
down so that the system will soon become disease-free; this is certainly not the case.

What could happen next?

Either the value of γ(t) remains below γ (FLC) forever, or at some point it exceeds γ (FLC) . The former means that the system
remains endemic forever, while the latter means that the system successfully returns to the disease-free state (cases VIII to X in
Table 3; Figure 5 (l), (m), (n); point 4 in Figure 7). Once this has taken place, individuals need not retain their high cautiousness
level; they can safely reduce their cautiousness level, as long as it remains above γ (TR) , without bringing the system back to the
endemic state. In practice, this could mean that, once the pandemic has settled down, individuals no longer need to observe strict
health protocols. Indeed, the cautiousness level γ(t) can safely be set as low as 0.17. If it becomes 0.16, however, the pandemic
reattacks, and, as before, necessitates a significant effort to settle it down: γ(t) must once again be brought to exceed γ (FLC) .
This circulatory dynamical behaviour is best visualised as the hysteresis cycle in Figure 7.

4 Conclusions and Future Research

We have studied an SIR-type model for the spread of COVID-19 in a population. The model incorporates as parameters the
population’s entrance and exit rates, incidence and recovery coefficients, the susceptible individuals’ cautiousness level, and the
hospitals’ bed-occupancy rate. From its analysis, we draw three conclusions.

First, we have proved that the models’ basic reproduction number does not depend on the bed-occupancy rate, suggesting
that:

(i) merely increasing the hospitals’ bed-occupancy rate (e.g., by establishing increasingly many makeshift hospitals) does not
resolve the pandemic.

Next, since suppressing the entrance rate or the incident coefficient could lead to economic damage, increasing the exit rates
is undesirable, and increasing the recovery coefficient is difficult due to the limitedness of medical resources, the model has
suggested that:

(ii) the best way to resolve the pandemic is to increase the susceptible individuals’ cautiousness level.

Most importantly, we have observed the importance of a high cautiousness level for resolving the pandemic. Indeed, the system,
having been brought to an endemic state even by a slight drop of cautiousness level, cannot be recovered to disease-free by merely
restoring the cautiousness level to its pre-endemic value. We conclude that:
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(iii) for a successful annihilation of the pandemic, a high cautiousness level is crucial.

More plainly, whether or not our wish that the pandemic soon ends will become a reality relies very largely on whether or not we
are seriously cautious of the disease and consequently adhere to health protocols. It is not sufficient for us to hold the cautiousness
level that we had before the pandemic entered our country: perhaps merely being aware of the existence of the disease without
implementing protective actions.

This research is extendible in a number of ways. In the numerical analysis, instead of varying only the cautiousness level,
one could also vary the bed-occupancy rate, thereby investigating codimension-two bifurcations exhibited by the model. For
increased values of the bed-occupancy rate, preliminary experiments reveal the occurrence of Bogdanov-Takens and generalised
Hopf bifurcations, as well as the existence of a region whereby a stable endemic equilibrium is surrounded by an unstable limit
cycle.

Moreover, the model studied in this paper is simplified; it can be made more realistic by adding more compartments, e.g.,
those of quarantined, exposed, and/or asymptomatic individuals. In addition, one could take into account, e.g., the incubation
period, and/or the possibility of reinfection, introducing a positive rate at which recovered individuals become susceptible.
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