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Abstract

Bats are ecologically and economically important species because they consume
insects, transport nutrients, and pollinate flowers. Many species of bats, in-
cluding those in the Myotis genus, are facing population decline and increased
extinction risk. Despite these conservation concerns, few models exist for pro-
viding insight into the population dynamics of bats in a spatially explicit context.
We developed a model for bats by considering the stage-structured colonial life
history of Myotis bats with their annual migration behavior. This model provided
insight into network dynamics. We specifically focused on two Myotis species
living in the eastern United States: the Indiana bat (M. sodalis), which is a Fed-
erally listed endangered species, and the little brown bat (M. lucifugus), which is
under consideration for listing as an endangered species. We found that multi-
ple equilibria exist for the local, migratory subpopulations even though the total
population was constant. These equilibria suggest the location and magnitude of
stressors such as White-nose Syndrome, meteorological phenomena, or impacts
of wind turbines on survival influence system dynamics and risk of population
extirpation in difficult to predict ways.

Keywords: spatial ecology, network dynamics, population biology, Indiana bat,
little brown bat

1 Introduction

Bats are the second most diverse group of mammals and perform many important ecolog-
ical and economic roles [28]. These species consume large quantities of insects, benefiting
humans [19]. This insect consumption has a significant benefit on important agricultural
crops, including forests [18, 35, 23]. The annual economic impact of insect consumption by
bats has been estimated at approximately $23 billion within the United States [5]. Bats
also play an important role in redistributing nutrients across the landscape. For example,
the nitrogen from guano piles below the maternity roosts of the northern long-eared bat,
Myotis septentrionalis, and Indiana bat, M. sodalis, fertilizes soil and plays a crucial role in
forest regeneration and gap dynamics [9]. Despite these important roles, bats are relatively
understudied as a taxon and many species are imperiled.

Several Myotis spp. are declining in abundance across eastern North America, including
the Federally endangered Indiana bat [1] and the little brown bat, M. lucifugus, a species
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being considered for listing under the Endangered Species Act [11]. Both of these species
share similar life histories, overwintering in hibernacula and roosting in trees during the
summer for breeding, but have differed in their historical abundances. The Indiana bat was
one of the first species listed under the Endangered Species Act whereas the little brown
bat was the most common bat species in the eastern U. S. until the arrival of the rapidly
spreading and novel fungal disease, White-nose Syndrome [10]. In addition to White-nose
Syndrome, these species are also facing threats from habitat loss, land use change, wind
energy development, and climate change [19, 3].

Despite the ecological and conservation importance of Myotis spp., few models exist
to provide insight into their population dynamics (e.g., [26, 10, 15, 24, 32]) and no bat
population models were developed until the late 2000s [14]. These models largely focused
on winter populations without explicitly considering the movement of bats between caves,
shared summer habitat, and the general interconnectedness of bat population dynamics.

Because bats face threats such as land use change (e.g., loss of forested habitat, increase
in predation) and wind energy development (e.g., blade mortality and barotrauma) that are
route-specific, we wanted to develop a model that included the structure of the migratory
network while modeling unique aspects of Myotis biology. To do this, we modified a model
developed by Taylor and Norris [30] to include relevant life history traits of Myotis spp.
found in the eastern United States.

Taylor and Norris [30] developed a spatially explicit model comprised of complex net-
works of migratory and non-migratory sites to explore how alterations of populations or their
habitat at one site affects other, connected migratory populations. The model by Taylor
and Norris [30], constructed with avian taxa in mind, differed from many other frameworks
because it focused on the connectivity of migratory populations (e.g., the population moving
between points A and B rather than the population at point A). This detail of their model
lends itself to migratory cave bats because the migratory subpopulations face route-specific
threats.

We modified the generic, avian model developed by [30] in two ways. We specifically
focused on the little brown bat and Indiana bat. First, we included two life-stages rather than
a single life-stage. First-year breeding Myotis bats are known to have lower pup production
and different survival rates than adults [32]. Second, we relaxed an assumption between the
order of arrival at a breeding site and reproductive success. The order or rank of arrival for
many bird species determines the quality of habitat available to the animal (e.g., the first
bird to arrive secures the best nest site). Conversely, Myotis bats have a colonial breeding
structure where arrival order likely plays little social or ecological role [19, 3]. We begin by
presenting the model structure and then explore how population-level stressors may affect
Myotis population dynamics and connectivity.

2 Model

2.1 Model description

Myotis spp. have a migratory life history that includes multiple life stages (Figures 1 and 2,
Tables 2 and 3). The discrete life history of bats lends itself to difference equations with a
time step of one year (Equations 1 and 2). Our model reports the number of juveniles and
adults during winter because most population monitoring occurs in winter at hibernacula.
Both males and females are included as part of the model and this is reflected within the
fecundity term. Based upon a previous demographic model [32], the number of first-year
breeding bats at the next year (J(t + 1); referred to as “juveniles”) depends upon four
steps: 1) juveniles (J(t)) and adults (A(t)) from the previous year must survive spring
migration (cJS and cAS); 2) juveniles and adults must survive the summer (QJ and QA);
3) juveniles and adults must produce pups (fJ and fA); and finally 4) the pups must survive
fall migration (cPF ).
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Figure 1: Modeled life cycle of a Myotis spp. that overwinters in a hibernaculum and spends
the summer at a breeding site. Parameter names are listed in Table 3. Fall movements are
depicted as right arrows and spring movements are depicted as left arrows. The “Pups” in-
clude individuals that are born, but have not yet completed their flight to the hibernaculum.
“Juveniles” include individuals that have not yet returned to the hibernaculum for their sec-
ond winter. “Adults” include all other individuals. The dashed lines are births; whereas,
the solid lines are movements through time. Parameter names are listed in Tables 1–3.
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Figure 2: Example of a hypothetical spatial bat population. The B sites are breeding sites
and the N sites are non-breeding sites where the bats overwinter. Dashed lines indicate
migratory pathways.
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Adult dynamics involve three steps: 1) the pups become juveniles after surviving the
fall migration (which is at about 3–4 months of age); 2) the juveniles become adults after
surviving their first winter (VJ), and then survive the spring migration (cSJ), summer (QJ),
and fall migration (cFJ) (which is at about 15–16 months of age); and 3) Adults migrate
during the fall (cAF ) to the hibernacula where they overwinter (VA) and then migrate during
the spring (cSA) to breeding sites where they spend the summer (QA). This cycle continues
until the adult bats die.

Myotis populations are connected [29], with members of a summer roost site originating
from different hibernacula [21]. To allow the model to track subpopulations using different
migration routes, we incorporated spatial dynamics into the model following the approach
used by Taylor and Norris [30]. Our parameter names differed from [30] reflecting differences
between avian and bat ecology; we have included a table that crosswalks both their names
and ours (Table 1). Each subpopulation has a unique migration route between non-breeding
(n ∈ 1, 2, 3, . . . , N) and breeding site (b ∈ 1, 2, 3, . . . , B). This spatially explicit form of the
model we used becomes the following set of equations:

Jn,b(t+ 1) = cP :n,b:F cJ:n,b:SfJ:n,bQJ:n(t)Jn,b(t)

+ cP :n,b:F cA:n,b:SfA:n,bQA:n(t)An,b(t), (1)

An,b(t+ 1) = cJ:n,b:ScJ:n,b:FQJ:b(t)VJ:n(t)Jn,b(t)

+ cA:n,b:ScA:n,b:FQA:b(t)VA:n(t)An,b(t). (2)

Table 1: Parameter symbols used by Taylor and Norris [30] compared to symbols and names
used within our model. We separated out the F matrix to be a separate fecundity term f
and breeding site carrying capacity V . For simplicity, we include neither the subscripts that
indicate age structure within our model nor most site-specific subscripts. It is also worth
noting that some, but not all, of our matrices are transposed from the matrices of Taylor
and Norris [30].

Taylor and Norris our
symbol [30] symbol Parameter value

NB B Number of breeding sites
NW N Number of non-breeding (winter) sites
Dij Dn,b Distance between sites
cij cn,b Migration survival
d′ – Site rank (removed)
b′ – Site rank (removed)
d v Non-breeding site baseline survival
q q and f Breeding site baseline survival and fecundity
Kb Kb Breeding site carrying carrying capacity
Kn Kn Non-breeding site carrying carrying capacity
F Q Breeding site survival matrix
S V Non-breeding site survival matrix

As an example of our subscript syntax, the adult subpopulation migrating between
non-breeding site 1 and breeding site 3 would be A13 while total number of individuals
overwintering at non-breeding site 1 would be the sum of all individuals migrating from
any breeding site to site 1 (i.e.,

∑B
b=1A1b). The migration survival (c) between sites affects

subpopulation size and is a function of distance (e.g., cJ:n,b:S refers to the subpopulation
that overwinter at non-breeding n and spends the summer at breeding site b, rather than
migrating from site n to site b). This is in agreement with previous observations of increas-
ing mortality associated with increasing migration distance [16]. We assumed a constant
migration survival rate across all life stages, but this parameter could be modified if data
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existed indicating survival rate differences among stages (Equations 3–7). Furthermore,
this term can have additional migration mortality (µ) caused by outside stressors, such as
mortality from meteorological phenomena or wind turbines, that might vary between spring
and fall migrations [3]. Accordingly, survival is

cJ:n,b:S = (1− µs)e
(−0.01Dn,b), (3)

cA:n,b:S = (1− µs)e
(−0.01Dn,b), (4)

cP :n,b:F = (1− µf )e(−0.01Dn,b), (5)

cJ:n,b:F = (1− µf )e(−0.01Dn,b), (6)

cA:n,b:F = (1− µf )e(−0.01Dn,b). (7)

A density-dependent function is used to model survival in each non-breeding site (Equa-
tions 8–9) and breeding site (Equations 10–11). These functions, following directly from
Taylor and Norris [30], reflect not only the amount of physical space for bats in caves or
other roost sites, but also the amount of feeding habitat surrounding roosts. Note that the
survival at the summer sites (Q) sum over the different non-breeding groups (b1, b2, . . . , bB)
that use the summer sites:

QJ:b(t) = qje
∑N

n=1−
An,b(t)+Jn,b(t)

KBb , (8)

QA:b(t) = qae
∑N

n=1−
An,b(t)+Jn,b(t)

KBb , (9)

VJ:n(t) = vje
∑B

b=1−
An,b(t)+Jn,b(t)

KNn , (10)

VA:n(t) = vae
∑B

b=1−
An,b(t)+Jn,b(t)

KNn . (11)

Each breeding site has a site-specific fecundity for both juveniles and adults. This term
includes pup production (i.e., number of births) as well as the probability of surviving
to become juveniles. The maximum fecundity is 0.5 because our species of Myotis only
produces a maximum of 1 pup per year and we assume that half the population are males
who do not give birth [3, 32]. This is in contrast to some other species of bats capable of
producing multiple pups per season [3].

2.2 Parameter values

Parameter values were based upon those found within the literature for an assortment of
Myotis spp. (Tables 2–3). Each hibernaculum and each summer roost site has its own car-
rying capacity. This models a system of hibernacula and summer roost sites [8]. Following
the assumptions of Taylor and Norris [30], our model included density at both the hiber-
nacula and summer roost sites. This assumption was retained to maintain consistency with
the previous model. The fecundity rate reflects that younger bats are smaller and are less
likely to be successful at producing pups [3], assumes a 1:1 sex ratio [3], and a relatively
low mortality rate is incurred by pups during non-migratory periods [3]. The overall annual
survival rate of juveniles was assumed to be lower than adults (about 60% vs. about 95%).
These rates were calculated by multiplying the baseline seasonal survival parameters and
corresponds to a maximum life expectancy of about twenty years, which commonly occurs
with Myotis spp. [3]. The high seasonal parameter choice is also in agreement with modeling
efforts by others demonstrating that the overwinter survival is likely > 0.96 [4].

The “cost” of migration (decrease in survival as a function of distance) was modeled using
an exponential decay function (Equations 3–7) [30]. This function reflects that bats endure
a migration cost and decreases the size of subpopulations migrating a longer distance [8].
Our model currently assumes all three life stages (pups, juveniles, and adults) have the
same migration limits and that both spring and fall migration distances are the same. The
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Table 2: State parameter and life stages of Myotis bats in this model. The subscripts refer
to the individual non-breeding sites, n, and breeding site, b, to which a bat subpopulation
migrates.

Life stage Parameter Bat age
Pup – Through the first fall migration
Juveniles Jn,b Have not yet completed their second fall migration cycle
Adult An,b Have completed their second fall migration

Table 3: Life parameters of Myotis bats in this model. Some parameters have subscripts
that refer to the individual non-breeding sites, n, or breeding site, b. Additionally, some
parameters have a subscript that refers to either a juvenile, J , or an adult, A, subpopulation,
and one parameter has a P that refers to pups. The listed parameter values are used in
all simulations unless otherwise noted. Additionally, a subscript may be used to denote
spring, S, or fall, F , for migration related parameters. Note that subscripts on migration
parameters refer to the subpopulation, not the direction of travel (e.g., cJ:n,b:S refers to the
subpopulation that overwinters at non-breeding site n and spends the summer at breeding
site b, rather than migrating from site n to site b).

Parameter Parameter value
symbol Parameter name or equation
fJ:b Juvenile fecundity rate for breeding site b 0.25 ∀ b, b ∈ 1, 2, . . . , B
fA:b Adult fecundity rate for breeding site b 0.45 ∀ b, b ∈ 1, 2, . . . , B
Dn,b Distance between non-breeding site n and

breeding site b
(input parameter, see text)

cJ:n,b:S Spring juvenile migration survival Equation 3
cA:n,b:S Spring adult migration survival Equation 4
cP :n,b:F Fall pup migration survival Equation 5
cJ:n,b:F Fall juvenile migration survival Equation 6
cA:n,b:F Fall adult migration survival Equation 7
qJ:b Juvenile survival rate for breeding site b 0.80 ∀ b, b ∈ 1, 2, . . . , B
qA:b Adult survival rate for breeding site b 0.975 ∀ b, b ∈ 1, 2, . . . , B
vJ:n Juvenile overwinter survival at non-

breeding site n
0.80 ∀ n, n ∈ 1, 2, . . . , N

vA:n Adult overwinter survival at non-
breeding n

0.975 ∀ n, n ∈ 1, 2, . . . , N

KBb Carrying capacity for breeding site b KBb ∈ [10,000, 60,000]
KNn Carrying capacity for hibernaculum site

n
KNn ∈ [100,000, 600,000]

QJ:b(t) Juvenile breeding site survival Equation 8
QA:b(t) Adult breeding site survival Equation 9
VJ:n(t) Juvenile non-breeding site survival Equation 10
VA:n(t) Adult non-breeding site survival Equation 11

– 162 –



Letters in Biomathematics

●

●

0.0

0.5

1.0

0.0 0.5 1.0
X−coordinate

Y
−

co
or

di
na

te

Type

● Breeding Site

Winter Site

Population

1538

(a) Identical initial conditions.

●

●

0.0

0.5

1.0

0.0 0.5 1.0
X−coordinate

Y
−

co
or

di
na

te

Population

1500

1550

1600

Type

● Breeding Site

Winter Site

(b) Different initial conditions.

Figure 3: Site locations and final migratory subpopulation sizes for a simple migratory
simulation. The site shape indicates the type of site. The width of the line indicates the
final migratory subpopulation size.

migration function we used is parameterized to the same arbitrary unit of 1 used by Taylor
and Norris [30]. This parameter can easily be scaled for the population and area of interest.

2.3 Numerical methods and simulations

We presented two different spatial landscapes to demonstrate and explore our model: a
‘simple’ landscape and a ‘complex’ landscape. With these landscapes, we explored the
effects of varying carrying capacities, distances between hibernacula and roosts, stability,
and varying amounts of “take” on the model’s dynamics.

The simple landscape was designed to allow in-depth simulation studies. It consisted of
two non-breeding sites and two breeding sites (Figure 3), in a diamond shape with breeding
and winter sites adjacent to each other, so that all migration was along the equidistant
perimeter paths, with a fixed distance of 1 unit. The density term, K, was 30,000 individ-
uals at each breeding site and hibernaculum (i.e., KB1 = KB2 = KN1 = KN2 = 30,000)
controlling for carrying capacity. Taylor and Norris [30] noted the model should produce
“multiple unstable equilibria and (usually) one stable.” Based upon preliminary model
exploration, we observed multiple equilibria that appeared to be attractors and depended
upon the initial conditions of the model (i.e., the route-specific populations). These equi-
libria numerically converged, but small perturbations to the system sometimes caused the
model to find different equilibria. Based upon these observations, we ran simulations with
1,490 different sets of initial conditions to explore the model space. This set included empty
subpopulations (i.e., one or more routes without any individuals). These initial conditions
also could be thought of as a perturbation analysis, which is one method of analyzing local
stability [7]. For this analysis, 205 years of simulations were run although only the first 100
were plotted to allow visualization of the transient dynamics.

We also analyzed the effects of distance on population size by “moving” one migratory
population. For this, we changed the migration distance for one breeding site compared to
both hibernacula while keeping the other breeding location constant. The new distances
were 0.5, 1, 2, 4, and 8 units. This provided insight into the effects of distance on spatial
system dynamics.

The second experimental landscape was a complicated landscape lacking the symmetry
of the simple landscape. This landscape was simpler than the spatial array of little brown bat
complexes (e.g., [29]), but approaches biological realism while still maintaining tractability.
This landscape included three non-breeding and ten breeding sites (Figure 6, Table 4). The
initial subpopulation was comprised of 2,000 adults and 1,000 juveniles for every migration
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route. Different density-dependent or carrying capacity terms were used at the different
sites (Table 4). A second set of simulations was run with only two carrying capacities, one
for all breeding sites, and another for all non-breeding sites. We ran the complex landscape
simulations 6,000 years to ensure convergence was reached. This was required because a
long time period was required for some subpopulations to go extinct. Specifically, some
populations required a long time to converge numerically to zero.

Table 4: Coordinates for non-breeding sites and breeding sites for the more complicated
model. The coordinates are on an arbitrary distance scale.

Site name x-coordinate y-coordinate carrying capacity
Non-breeding 1 6 7 100,000
Non-breeding 2 4 −4 200,000
Non-breeding 3 −2 −2 200,000
Non-breeding 1 2 −3 10,000
Breeding 2 4 4 40,000
Breeding 3 −6 3 60,000
Breeding 4 15 7 10,000
Breeding 5 −1 −5 20,000
Breeding 6 0 2 30,000
Breeding 7 −4 −7 10,000
Breeding 8 8 −2 10,000
Breeding 9 −8 8 10,000
Breeding 10 −2 6 10,000

Finally, we ran a set of simulations using both landscapes to investigate simulated mor-
tality from wind farms. We only considered lethal take within our model. Homogeneous
conditions (e.g., uniform carrying capacities across sites and parameter values) were used
for both landscapes. Equilibrium population values were used for the initial population sizes
for the complex landscape and populations slightly above equilibrium values were used for
the diamond pattern landscape.

Four scenarios were run on the simple, diamond pattern landscape: 1) a reference simu-
lation with no additional migration mortality; 2) a simulation with 2% take of populations
migrating to the second breeding site during both spring and fall; 3) a simulation with
10% take of populations migrating to the second breeding site during both spring and fall;
and 4) a simulation with 10% take of populations migrating between breeding site 2 and
non-breeding site 2. The second and third scenarios might represent the development of
a wind farm near a breeding site affecting all migrants to and from that site. The fourth
scenario might represent a wind farm development along a single migration route.

Three scenarios were run for the complex landscape: 1) a reference simulation; 2) a
simulation with 10% take during both spring and fall migrations affecting breeding site 1;
and 3) a simulation with 2% take during both spring and fall migration affecting the third
hibernaculum. The second simulation might represent a wind farm development that only
affects one subpopulation. The third simulation might represent a wind farm development
affecting one hibernaculum.

All of our numerical simulations were conducted using R [25] and we have included
several functions as part of our online supplemental. The main function Bat Mig runs the
population simulation through time. The function Site Order produces the order in which
coordinates and other site information should be entered into the function. This function is
useful because we used vectors rather than matrices for the numerical implementation of our
model. The function Site Dist calculates the migration distances. The function Site Plot

plots the sites and the function Site Plot Mig plots both the final migration subpopulation
sizes and site locations. Figures were plotted using the ggplot2 package [33].
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Figure 4: Results of 1,490 different initial conditions. The different colors represent different
numbers of initial occupied sites. For example, if three subpopulations were present, one
migratory route would be unused.

3 Results

3.1 Simple landscape results

Regardless of the initial conditions, populations always reached equilibria without any multi-
state cycling occurring (Figure 4). Initial conditions, perturbations away from the equilibria
values, the number of occupied sites, and the location of occupied sites in the migratory
system all affected model behavior, the total population size, and the final population size.
The single-occupied subpopulation simulations always reached a single equilibrium value
as did the total populations when 1, 3, and 4 subpopulations were occupied. The two-
occupied subpopulation simulations had three different outcomes depending upon which
sites were occupied: two subpopulations “parallel” to each other and not sharing any sites,
two-subpopulations sharing a hibernaculum, or two-subpopulations sharing a breeding site.
Each of the configurations also led to a different total population size. The three-occupied
subpopulation simulations had two different equilibria values for each subpopulation and
this corresponded to which migratory populations were not sharing either a breeding or
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Figure 5: Results of changing the distance between breeding site 2 and the non-breeding
sites.

non-breeding site. The three subpopulation simulations always had the same total popula-
tion size at equilibrium. When three subpopulations were present, the subpopulation sharing
both the breeding and non-breeding site decreased to ∼ 10 bats, but did not proceed to ex-
tirpation. The four occupied subpopulation simulations had many different equilibria for
the individual subpopulations, but the total population always converged to the same equi-
librium value. Transient dynamics appeared to be less important for the four subpopulation
model compared to the other models. For all scenarios, population size became static within
the system once the total carrying capacity of the system was reached.

Changing the distance between a breeding site and non-breeding site changed the size of
the subpopulation in a manner consistent with a cost associated with migration distance.
Farther distances had lower population sizes along migratory routes, while shorter distances
had larger population sizes (Figure 5). Additionally, the systems with shorter migration
distances had greater total population sizes, ostensibly because of reduced migration mor-
tality.
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Figure 6: Site locations and final migratory population sizes for a complex migratory sim-
ulation. The site shape indicates the type of site. The width of the line indicates the final
migratory population size.

3.2 Complex landscape simulations

The more complex spatially structured population produced heterogeneous subpopulation
sizes at equilibrium (Figure 6). This included multiple sites being left unoccupied because
of the distance between hibernacula and breeding sites. The noticeable difference between
Figure 6a and Figure 6b describes the importance of both distance and site-specific carrying
capacity.

3.3 Simulating impacts of wind energy

Increased migration mortality changed the population dynamics (Figures 7 and 8) in a man-
ner dictated by density dependency and the common use of non-breeding sites. The 2% take
scenario decreased the subpopulation using the second breeding site as would be expected
from increased mortality. This decline in the subpopulation using the second breeding site
caused a slight increase in abundance of the populations using the first breeding site be-
cause both subpopulations were regulated by density dependency at non-breeding sites,
which they shared. The mortality in the subpopulation allowed the other subpopulation to
grow until the combined abundance of both subpopulations reached the carrying capacity
of the non-breeding sites.

However, the increase in the subpopulation not facing added mortality was not enough to
offset the loss from mortality, and led to a net decrease in the system-wide population size.
The 10%-take migration produced similar results but caused the extirpation of populations
using the second breeding site. The 10%-take of the population migrating between breeding
site 2 and the non-breeding site caused extirpation of this subpopulation; this scenario also
caused an increase in the two subpopulations sharing either the non-breeding or breeding
site. The increases in these two subpopulations then caused a decrease in the subpopulation
“parallel” to the originally affected subpopulation. This increase occurred because the
the two subpopulations sharing sites with this population experienced a release from the
consequences of density. The increase is not necessarily intuitive and is an artifact of the
model that may or may not be representative of reality.

The effects of increased migration mortality on the complex landscape system were
more straightforward. The 10% migration take that only affected one population caused
extirpation of that population. The 2% migration take affecting the fifth breeding site caused
small decreases in these populations. Unexpectedly, both scenarios had similar decreases
on the total population size, indicating density-dependent compensation with increasing
mortality from take.
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bel “both B2 paths” refers to the subpopulations that use the second breeding site, while
“NB2-B2 path” refers to the subpopulation that migrates between the second breeding site
and second non-breeding site.
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4 Discussion

Our model provides insight into both the population dynamics of bats and the more gen-
eral spatial dynamics of migratory species by considering the effects of a multi-life staged
organism aggregating in colonies. Our most surprising result was the presence of multiple
equilibria depending upon initial conditions or perturbations. This finding differed from
previous modeling efforts using a similarly structured modeling approach [30, 34]. Over-
all, our system-wide dynamics were stable, but the presence of multiple equilibria leads to
important ramifications for the system from both a numerical and biological perspective.
For example, numerical parameterizations of the model using optimization methods would
likely only yield one solution to the problem; this solution would be dependent upon the
numerical method used for parameterization as well as the initial values of the parameter-
izations [2]. Similarly, a Bayesian Markov Chain Monte Carlo method may find multiple
conditions depending upon the prior distributions used, which may lead to poor numerical
convergence [12]. Biologically, multiple equilibria may lead to multiple steady states for
the system. The implications of this result are that disturbance may permanently alter the
system to a new state, one inflexible to management action [27].

We found the transient dynamics of the system largely dissipated after 25 years for all but
the largest perturbations (or initial conditions farthest away from the equilibrium). Given
existing rates of change in bat habitats, it may be difficult for the species modeled here to
achieve stability, because they may be perturbed more frequently than every 25 years. The
assumption of a static environment may be a biologically unreasonable outcome because
system changes would likely occur during this time period and the underlying assumption
of a static environment is rarely appropriate. Additionally, some subpopulations would ei-
ther over or undershoot the equilibrium value before settling down. However, we observed
no oscillation and no multi-cycle solution appeared with our parameter choices. This result
occurs because the model includes density functions for limiting the upper size of popula-
tions.

As expected, increasing distance between populations decreased subpopulation size. This
decrease resulted in an increase in other subpopulation sizes, though the net result was a
decrease in total population size. This consequence of distance was exhibited in the more
complex landscape example, with more distant sites having smaller populations or being
unoccupied. This finding was not surprising, but lends realism to the model. Despite the
effects of distance and carrying capacity on population dynamics, both our simple and com-
plex experimental systems had sites used by two or more different migratory subpopulations.
This result was not reported by Wiederholt et al. [34] who found only one subpopulation
per site. However, Myotis spp. have been observed sharing both summer roost sites and
hibernacula with bats from other sites (e.g., two bats at a summer roost need not share a hi-
bernaculum) [21]. One possible reason for this difference may be that Wiederholt et al. [34]
included the rank function that we removed from the model. Including the rank function pe-
nalizes populations migrating long distances and decreases the opportunity for co-existence
of populations originating from different locations.

The multiple equilibria, transient dynamics, and effects of distance may affect the con-
servation of bats or similar colonially roosting species. A small disturbance at a single site
will likely be offset to some extent by an increase in other subpopulations through density-
dependent processes. A larger disturbance though may allow some populations to increase
in size even though the majority of populations and the total overall population are de-
creasing. The arrival of White-nose Syndrome in the eastern United States caused a large
die off of cave bats, with winter bat populations decreasing in size [32]. Nevertheless, some
populations increased in the region, possibly as a result of bats emigrating from the area of
infection [31].

The transient dynamics we observed also suggest a population may take a long time
to recover from a major disturbance. This is important for conservation of endangered
species such as the Indiana bat because the U. S. Fish and Wildlife Service issues “take”
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permits under the Endangered Species Act of 1973 and these permits allow individuals to
be killed or otherwise disturbed by activities such as energy production or development. If
great enough, this disturbance may result in a permanent shift in population structure or
recovery from this disturbance may require a greater time period than expected. Changing
the distance between populations may become important as well for bats. Loss of summer
habitat may change the distance subpopulations are required to fly during migration, which
in turn shifts hibernacula dynamics through its effects on density dependence.

The take scenarios also illustrate the importance of spatial dynamics. The diamond
shaped or simple landscape scenarios illustrated the need for considering nonlinear dynam-
ics and connections between populations. The complex landscape illustrated how similar
declines in the total population have very different metapopulation implications. One sce-
nario caused the extirpation of individuals at a site, but the other scenario caused small
and barely observable decreases to subpopulations. This difference illustrates how not all
population loss is the same across a landscape with different subpopulations. In metapop-
ulation models, the loss of subpopulations may increase the risk of extinction for the entire
metapopulation [13]. Though we did not explicitly study risk of system-wide extinction with
our model, our results suggest the loss of a single migratory subpopulation or site (either
breeding or overwinter) can alter the total population size and the spatial dynamics. Thus,
resource managers need to consider incremental population loss similar to incremental habi-
tat loss [6] and may need to understand the location of loss for correctly characterizing risk
to the system.

Our model works best when dealing with large populations not subject to stochasticity.
Bat populations, especially at summer sites, are often small and demographic stochasticity
is important for populations of this size [22]. The model as formulated also assumes strict
site fidelity without colonization of new locations. This assumption is valid for short time
scales because, for example, bats exhibit strong site attachment to specific summer roost
sites [17]. Over longer periods of time, these species require behavioral flexibility to change
summer breeding sites because of the transient nature of roost habitat [17]. Additional
research has shown that Myotis bat populations will colonize new sites, especially winter
sites [20]. Relaxing these assumptions would require the inclusion of stochastic demographic
and movement parameters. This extra cost in complexity though would increase the utility
of this framework within a decision making context.
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