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ABSTRACT
Influenza is a viral infectious disease of high importance widely studied around the
world. In this study we model within-host transmission of influenza in a continuous
deterministic setting, a discrete stochastic framework and a spatial-temporal model.
Previous models omit cellular restoration through cellular death, which is a key com-
ponent for the possibility of chronic infections. We thus investigate the effect of
cellular restoration on the spread of influenza within the host, through stability anal-
ysis of the deterministic model, the probability of state transitions in the stochastic
model and the effect of mobility rates on disease spread in the spatial-temporal
model. Using the Partial Rank Correlation Coefficient and the Latin Hypercube
Sampling, we performed sensitivity analysis to determine which of the parameters
are most influential to the model output.
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1 Introduction
Cellular regeneration is the regrowth of lost tissues or organs in response to injury. The ciliated cells are the target cells in the
upper respiratory tract which are infected by the flu virus. The average ciliated cell population that die as a result of flu infection
is huge and if more of the ciliated cells are infected or dead, this will increase the chance of the virus travelling freely through the
bronchi to infect the lungs (Zanin et al., 2016; Matrosovich et al., 2004, 2007; Nicholls et al., 2007; van Riel et al., 2007; Yao
et al., 2010). The inclusion of cellular regeneration is important in the study of disease state and transitions.

In this investigation, deterministic, stochastic and spatial-temporal models are used to study the effect of the cellular regener-
ation on the flu-infection dynamics within the upper respiratory tract, the peak infection and disease spread. Many investigations
have focused on the dynamics (computational) without much emphasis on the steady states of the disease and the stability of
such steady states. A few models, have investigated the stability analysis of flu-infection in population dynamics (Khanh, 2016;
Kanyiri et al., 2018).

In order to account for cells which are exposed to the flu-virus but not replicating virus yet, we will consider such cells to
be in the eclipse phase (or latent phase). This phase accounts for the time lag between the viral entry into the ciliated cells and
active viral production. In general, the length of the eclipse phase is specific to each virus. For instance, the average length of
the eclipse phase for human immunodeficiency virus-1 (HIV-1) infection is around 24 hours, whereas for different strains of
influenza virus, the length of the eclipse phase can vary from 4 to 12 hours (Kakizoe et al., 2015).

One of the early deterministic within-host models by Perelson et al. (1993) considered the interaction of HIV with CD4 +
T cells. The model contains an explicit compartment for uninfected, infected, eclipse and virus. The model exhibited 2 steady
states: an uninfected state in which no virus is present and an endemically infected state in which virus and infected T cells are
present. Inclusion of eclipse phase in the model has provided a better fit with both numerical and empirical data (Baccam et al.,
2006; Beauchemin and Handel, 2011b; Boianelli et al., 2015). The deterministic model will help us to investigate the stability
of the steady state of the different compartments.

We extend the ODE model to include variability in cells and virus, this allows us to investigate the future state of the disease in
Discrete Time Markov Chains and Continuous-Time Markov Chains (CTMC). In the Discrete-Time Markov chains (DTMC),
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Figure 1: Compartmental diagram for model (1).

time is considered to be a discrete variable that can take values t0+nΔt for n ∈ N and some initial time t0, wherebyΔt is assumed
to be small enough so that most events occur during Δt (Allen, 2017; Malik, 2016). In the CTMC, the random variables are
discrete value, and account for variability in viral establishment arising from small number of cells and virus at the initiation of
an infection and the impact of the regenerated cells in determining the state of the disease. CTMC can be very computationally
expensive, as they require generating exponential random variables that dictate how long a cell stays in a given state.

Numerical examples that show the infection dynamics by the various deterministic and stochastic modeling approaches
are investigated in the context of Influenza A Virus (IAV) infection. Influenza A virus targets the epithelial cells or the upper
respiratory tract with an incubation period of about 48 hours and a range of 24–96 hours (Taubenberger and Morens, 2008).
Beauchemin and Handel report the life span of an infected cells from 12–48 hours, the average lifespan of a virion from 0.5 to
3 hours, the length of eclipse phase from 3 to 12 hours and a sufficient rate of cellular regeneration as 1d−1.

In order to account for the spread of the flu virus and the effect of the cellular regeneration in the disease spread, we formulate
a density dependent diffusion coefficient. In the following Section 2, the deterministic within-host model is introduced. The
basic reproduction number is calculated and used to study the stability of the steady states for disease free and endemic cases. In
Section 3, stochastic models (DTMC and CTMC) are formulated with different but complementary objectives. In Section 4, a
spatial-temporal model (partial differential equation) is formulated and studied to account for the disease spread; when the viral
transport is dependent on the density of the infected and uninfected cells.

2 Deterministic Model

2.1 Governing equations
The core of our study is the deterministic ordinary differential equations (ODE) model which provides insights to study the
disease interaction with cells . The cells are grouped into four classes: Target cells, T , Exposed cell, E, Infectious cells, I , and
Dead cells D (see Figure 2.1). Target cell T , represent the cell population susceptible to infection. These cells transition to the
exposed class at the rate β. Cells enter the target class at a rate rD due to cellular restoration which is triggered by dead cells, D.
Exposed cells, E represent the cells that have been infected but are not yet producing new virons. This class can also be referred
to as the latent or eclipse class. This class gains cells from the target population and loses cells to the infectious class at a rate of
1/τE . Infectious cells, I , represent the class that actively produces new virons. It gains cells from the exposed class and loses cells
to infection related death at a rate of 1/τI . Finally, Virus, V represents the virus. Infectious cells produce new virons at rate p
and the virus is cleared at a rate c:

dT
dt

= −βTV + rDD

dE
dt

= βTV − E
τE

dI
dt

=
E
τE

− I
τI

dV
dt

= pI − cV

(1)

where
N = D + T + E + I ⇒ D = N − T − E − I .

Our biological constraints dictate that only non-negative cell populations are relevant. We briefly analyze the behavior of
the system of differential equations on theT ,E, I andV axes, all the combinations of planes, and all the combinations of hyper-



LETTERS IN BIOMATHEMATICS 231

planes, in order to confirm that solutions always point from the boundaries inward towards the set of positive real numbers of
the state space, Ω =

{
(T ,E, I ,V ) ∈ R4 : 0 ≤ T ,E, I ,V ; N ≥ T + E + I

}
⊂ R4+.

In order to secure the existence and uniqueness of solutions for a one dimensional ODE, d
dt y = f (y), f (y) must be continu-

ous and f ′ (y) must exist and be continuous. This can be extended to systems of differential equations, d
dtF = F

(
x1 (t), x2 (t), . . . ,

xn (t)
)
. The system must be continuous on an open set U , the Jacobian matrix for F must be defined in U , and the elements

of the Jacobian matrix must be continuous. In our case,U =
◦
Ω, the Jacobian exists and is continuous, over this region. Because

U =
◦
Ω does not account for the boundaries, the boundary behavior was analyzed to show that points on the boundary always

go in towards the interior. The only exception is the T-axis which is invariant.

2.2 Stability analysis
2.2.1 Local stability of disease free equilibrium (DFE)

The model exhibits a DFE, when we set the right-hand sides of the equations of the model to zero. This is given as

(N , 0, 0, 0).

The local stability of the DFE is explored using the next generator method proposed by van den Driessche and Watmough
(2002). The non-negative matrix F , of the new infection terms and the M-matrix, V, of the transition terms associated with
the deterministic model are, respectively given by

F =
©«
0 0 0 0
0 0 0 βN
0 1

τE 0 0
0 0 p 0

ª®®®¬ , V =
©«
rD rD rD βN
0 1

τE 0 0
0 0 1

τI 0
0 0 0 c

ª®®®¬ . (2)

Definition 2.1. (van den Driessche and Watmough, 2002) The basic reproduction number (R0) is defined as the expected
number of cells (secondary cases) that will be infected as a result of one infected cell and is denoted by (R0) = ρ(FV−1) where
ρ is the maximum eigenvalue of the matrix FV−1.

The basic reproduction number of our model is given by

ρ(FV−1) = R̃0 =
(
βpNτI

c

) 1
3

. (3)

Theorem 2.2. The Disease Free Equilibrium is locally asymptotically stable when R0 ≤ 1 and it is unstable when R0 > 1.

Proof. Suppose that the eigenvalues of their Jacobian matrices have only negative real parts (Wiggins, 2003), then the equilib-
rium points are locally asymptotically stable, otherwise unstable.

Linearlizing our model, we have the Jacobian matrix evaluated at the disease free equilibrium, such that

λI − JDFE =
©«
λ + rD rD rD βN

0 λ + 1
τE 0 −βN

0 − 1
τE λ + 1

τI 0
0 0 −p λ + c

ª®®®¬ . (4)

Computing the eigenvalues by det(λI − JDFE), we obtain

det(λ − JDFE) = (λ + rD)
((
λ +

1
τE

) (
λ +

1
τI

)
(λ + c) −

βNp
τE

)
= 0. (5)

We notice that the term βNp/τE can easily be expressed in terms of R0 and we find that βNp
τE = cR0

τEτI . Substituting in this term
and simplifying equation 5, we obtain the following:

det(λI − JDFE) = (λ + rD)
(
λ3 + λ2

(
1
τE

+
1
τI

+ c
)
+ λ

(
1

τEτI
+

c
τE

+
c
τI

)
+

c
τEτI

· (1 −R0)
)
= 0. (6)



232 B. O. EMERENINI, R. WILLIAMS, R. N. G. REYES GRIMALDO, K. WURSCHER, E. R. IJIOMA

We see that λ = −rD is a negative root so it only remains for us to consider the third degree polynomial. The coefficients
of λ3, λ2, and λ are all always positive due to our assumptions about the parameters. The term corresponding to λ0 is positive
when R0 ≤ 1 and negative when R0 > 1.

WhenR0 ≤ 1 and all the signs of the coefficients of λ are positive, there are zero sign changes in the sequence of coefficients.
By Descartes’ Rule of signs (Wiggins, 2003, p. 13), there are zero real positive roots. So, whenR0 < 1, all the real components of
the eigenvalues are negative and we have local asymptotic stability, as desired. Similarly, when R0 > 1, there is one sign change
in the sequence of coefficients, meaning we have exactly one positive root, giving us instability at the disease free equilibrium.

We can confirm that there are no roots with positive real parts when R0 < 1 through the Routh Hurwitz test (see the
supplementary materials for this article). □

2.2.2 Global stability of DFE

Theorem 2.3. The disease free equilibrium of (1) is globally asymptotically stable whenever R0 < 1.
Proof. A comparison theorem will be used for the proof. The equations for the infected components of the model (1) can be
written as

dE
dt

= βTV − E
τE

,
dI
dt

=
E
τE

− I
τI
,

dV
dt

= pI − cV .

These equations can be simplified as follows

©«
dE
dt
dI
dt
dV
dt

ª®®¬ =
(
T
N

)
F ©«

E
I
V

ª®¬ − V ©«
E
I
V

ª®¬ . (7)

Since T ≤ N ; therefore, ©«
dE
dt
dI
dt
dV
dt

ª®®¬ ≤ (F − V ) ©«
E
I
V

ª®¬ . (8)

Because the eigenvalues of the matrix J = F −V have negative real parts when R0 < 1, using comparison theorem (Neubert and
Parker, 1989), we have (E, I ,V ) → (0, 0, 0). Now by substituting all infected classes equal to zero in the deterministic model,
we get T → N at t → ∞ for R0 < 1.

The epidemiological interpretation of the above result is that if the value of R0 is kept to less than or equal to unity, the
disease can be eliminated. □

2.2.3 Local stability of the endemic equilibrium

Theorem 2.4. The Endemic Equilibrium is locally asymptotically stable when R0 > 1 and it is locally asymptotically unstable
when R0 ≤ 1.
Proof. Next we will look for local stability for the endemic equilibrium whenR0 > 1. We will denote this point by (T ,E, I ,V ) =
(T ∗,E∗, I∗,V ∗). Our Jacobian at the endemic equilibrium (JEE) after taking the difference from λI is as follows:

λI − JEE =
©«
λ + βV ∗ + rD rD rD βT ∗

−βV ∗ λ + 1
τE 0 −βT ∗

0 − 1
τE λ + 1

τI 0
0 0 −p λ + c

ª®®®¬ .
From this we can calculate the characteristic polynomial of JEE :

det(λI − JEE) = (λ + βV ∗ + rD)

������
λ + 1

τE 0 −βT ∗

− 1
τE λ + 1

τI 0
0 −p λ + c

������ + βV ∗

������
rD rD βT ∗

− 1
τE λ + 1

τI 0
0 −p λ + c

������
= (λ + βV ∗ + rD)

( (
λ + 1

τE

) (
λ + 1

τI

)
(λ + c) −

βT ∗p
τE

)
+ βV ∗

(
rD

(
λ + 1

τI

)
(λ + c) + 1

τE

(
rD (λ + c) + pβT ∗) ) .

This term is expanded and simplified because it cannot be factored. T ∗ is replaced by its equivalent form, c/(pβτI ), to aid with
the simplification. We are left with a characteristic polynomial with the coefficients listed below. We can confirm that there
are no roots with positive real parts when R0 > 1 through the Routh Hurwitz test (see the supplementary materials for this
article). □
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2.2.4 Global stability of endermic equilibrium

Theorem 2.5. Let X∗ = (T ∗,E∗, I∗,V ∗) be a positive steady state of the system (1). Then X∗ is globally asymptotically stable
with respect to initial conditions in

◦
Ω if T ∗ < T ,E∗ < E, I∗ < I ,V ∗ < V and V ∗ < 4V , and pI < cV .

Proof. Let us consider the system (1), we will prove the existence of a Lyapunov function. Let us notice that any steady state
holds the following steady state equations:

βT ∗V ∗ = rD (N − T ∗ − E∗ − I∗) = E∗

τE
=
I∗

τI
,

pI∗ = cV ∗

We define the function

L(X) =
∫ T

T ∗
1 − T ∗

x
dx +

∫ E

E∗
1 − E∗

x
dx +

∫ I

I∗
1 − I∗

x
dx + α

∫ V

V ∗
1 − V ∗

x
dx

where α is a positive constant, defined later. Notice that for any X ∈ Ω is such that V (X ) ≥ 0 where V (X ) = 0 if and only if
X = X∗. Furthermore, notice that

¤L(X) = ∇(L(X) · ¤X
=

(
1 − T ∗

T
)
rD (T ∗ − T + E∗ − E + I∗ − I) + I∗

τI

(
1 − T ∗

T − TVE∗

T ∗V ∗E − I∗E
IE∗ − I

I∗
)
+ I∗

τI

( V
V ∗ + 2

)
+ α

(
1 − V ∗

V
)
(pI − cV )

where the first term
(
1− T ∗

T
)
rD (T ∗ − T + E∗ − E + I∗ − I) < 0 by the conditions of the theorem. Looking at the second term,

we want the magnitude of the negative terms to be greater than the positive terms. As in the local stability, we will utilize the
Arithmetic Geometric Mean. Since there are 4 negative terms we know the following:

4∑︁
i=1

Ni ≥ 4

(
4∏
i=1

N1

) 1
4

. (9)

So, it is enough to show that four times the fourth root of the product of the negative terms is greater than 1.

4

(
4∏
i=1

N1

) 1
4

= 4
(T ∗

T
·
TVE∗

T ∗V ∗E
·
I∗E
IE∗ ·

I
I∗

) 1
4 = 4

( V
V ∗

) 1
4 (10)

Setting this result greater than 1 and rearranging our terms, we obtain the inequality V > 1
4V

∗, which follows from our hy-
potheses. So, this term is negative.

We are now left with two terms, I∗
τI

( V
V ∗ +2

)
and α

(
1− V ∗

V
)
(pI− cV ). Due to our conditions, we know that the term attached

to α is negative. So, we define α so that we ensure the negative term overpowers the only remaining positive one. We define α as

α = k · I∗τI
( V
V ∗ + 2

)
(11)

where k is some constant that is larger than one when multiplied with
(
1 − V ∗

V
)
(pI − cV ). □

3 Stochastic Model
In Discrete-Time Markov Chains, time is considered to be a discrete variable that can take on the values t0 + nΔt for n ∈ N
and some initial time t0. Thus, in order to make use of Discrete-Time Markov Chains, one must be able to reasonably assume
that Δt can be chosen to be small enough so that at most one event occurs during Δt (Allen, 2017; Malik, 2016). On the other
hand in Continuous-Time Markov Chains, t ∈ [0,∞), which frees us from needing to make such an assumption. However,
Continuous-Time Markov Chains can be very computationally expensive, as they require generating exponential random vari-
ables that dictate how long a cell or person stays in a given state within the model (Hordijk et al., 1976; Sandmann, 2008).
Additionally, given a population of size N , N + 1 Kolmogorov’s differential equations would be needed for one of the most
basic epidemiological models, an SIS model, in the case of Continuous-Time Markov Chains (Keeling and Rohani, 2008). Pre-
vious biological models have produced Discrete-Time Markov Chains that are more efficient than Continuous-Time models
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Table 1: Transition events and their probabilities in the stochastic model.

Event Event Description Transitions Probability of Event Occurring
between time t and t + Δt

1 Target cell becomes exposed to the viron T → T − 1,
E → E + 1

βTVΔt

2 Exposed cell becomes infectious E → E − 1,
I → I + 1

E
τE

Δt

3 Infectious cell dies I → I − 1,
D → D + 1

I
τI
Δt

4 Cellular restoration D → D − 1,
T → T + 1

rDDΔt

5 No change No transitions 1 −
(
βTV +

E
τE

+
I
τI

+ rDD
)
Δt

and produce stochastically identical results in the case of biochemical network modeling (Sandmann, 2008) and genetic regu-
latory network modeling (Ivanov and Dougherty, 2006). However, these biological situations may lend themselves more easily
to DTMC models due to having only one independent variable.

Continuous-Time Markov Chains are a popular and well-studied model for the spread of infectious diseases (Allen, 2017;
Bai et al., 2019; Edholm et al., 2018; Yan et al., 2016). We have chosen instead to focus on a DTMC model in order to better
study methods for using this type of model to predict the spread of infectious diseases and to develop a more computationally
efficient model than ones used in the past.

We have chosen to focus on Discrete Homogenous-Time Markov Chains for the stochastic modeling of within-host dy-
namics of influenza. In this type of model, the classes a cell can be in and time are discrete variables. In our case, a cell may be a
target, exposed, infectious, or dead cell in any of the time values {t0, t0 + Δt, t0 + 2Δt, . . .}. The homogeneous-time aspect of
our model indicates that we are assuming that the probability of transitioning between the classes of our model does not depend
on time. We will assume that we have a fixed number of cells that may fall in the classes of target cell, exposed cell, infectious cell,
or dead cell. The random variables in the stochastic model will be denoted in calligraphic letters to avoid confusion with the
non-random variables in the deterministic model. We let N be the total number of cells, T be the random variable representing
the number of target cells, E be the random variable representing the number of exposed cells, I be the random variable repre-
senting the number of infectious cells, and D be the random variable representing number of dead cells, such that we have the
dynamic states equation as

N = T + E + I +D.

Within this model, there are five events that could occur. Some of these events also affect the amount of virus present, represented
by the random variable V. These events and the probability of them occurring are summarized in Table 1. Notice that the
transition probabilities are given by the transition rates seen in the deterministic ODE model multiplied by Δt.

Notice also that since N is a constant and due to the biological constraint N = T + E + I + D, we have one dependent
variable and three near-independent variables considering thatN is very large, albeit for simplification we will treat these variables
as independent variables. We choose our dependent variable to be D, leaving our independent variables as T , E, and I . This
set-up is a multivariate stochastic process {(T (t),E(t), I (t)) |∞t=0}, that is time-homogeneous and should satisfy the Markov
property, discussed below. Thus, we may write our joint probability density function as

Pt,e,i (t) ≔ Pr [(T (t),E(t), I (t)) = (t, e, i)] (12)

where t, e, i ∈ {0, 1, 2, . . . ,M}. We define M to be the total number of live cells which is bound by the total population size N
such that T (t) + E(t) + I (t) = M ≤ N , this means that the sum of T (t),E(t), I (t) can never exceed the size of the entire
population. We can assume thatΔt can be sufficiently small such that at most one change in state occurs during the time interval
Δt. The probability of transition from the state (t, e, i) to the state (t + k, e + j, i + l) is defined (using the notation in Allen and
Burgin, 2000, and Malik, 2016) by

Pt+k,e+j,i+l (Δt) = Pr[(ΔT ,ΔE,ΔI) = (k, j, l) | (T (t),E(t), I (t)) = (t, e, i)]

where
ΔT = T (t + Δt), ΔE = E(t + Δt), ΔI = I (t + Δt).
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We assume that the joint probability density function (12) holds the Markov Property.

Definition 3.1. The Markov Property holds that the state at time t + Δt is dependent only on the state at time t and is inde-
pendent of all previous times. If Xt is a vector describing our state at time t, then the Markov Property may be written as

Pr(Xt+Δt = b | Xt ,Xt−Δt , . . . ,XΔt ,X0) = Pr(Xt+Δt = b | Xt).

If the Markov Property satisfies, then the values of T (t + Δt), E(t + Δt), I (t + Δt), and D(t + Δt) depend only on the values
of T (t), E(t), and I (t).

It is reasonable to assume that our model holds the Markov Property because we would not expect the probability that
transition from a current disease state to a new disease state to depend on past disease states. The only factors that should affect
the transition from the current disease state are how many virons, target cells, exposed cell, infectious cells, and dead cells there are
at each moment; all of which are encompassed in the current disease state. The Markov Property is important for understanding
a component of our stochastic model, the transition matrix. The transition matrix is a matrix that governs how values change
from one time to the next. The Markov Property allows us to make use of the transition matrix in the following manner.

Denote the transition matrix as M and the random vector of values of describing the state at time t as X (t). Then,

X (t0 + Δt) = M ·X (t0)
X (t0 + 2Δt) = M ·X (t0 + Δt) = M2 ·X (t0)

...
X (t0 + nΔt) = M ·X (t0 + (n − 1)Δt) = Mn ·X (t0).

We give a more formal definition of the transition matrix.

Definition 3.2. (Allen, 2010, p. 47) The transition matrix of the Discrete Time Markov Chain {Xn}∞n=0 with state space
{1, 2, . . .} and one-step transition probabilities,

{
pab

}∞
a,b=1, is denoted as M = (pab), where

M =


p00 p01 p02 . . .
p10 p11 p12 . . .
p20 p21 p22 . . .
...

...
...

. . .


.

In this case, pab is the probability of transitioning from state a at time t to state b at time t + Δt and
∑

b pab = 1.

Discrete Markov Chains are most commonly used when the change in state from a to b can be described by the change in
only one variable. So, p01 may be thought of as the probability of having 0 cells in one class (say the infectious class) at time t and
1 cell in the same (infectious) class at time t + Δt. When there is only one independent variable to change between times, this
approach is relatively straightforward. However, in our case, we have three independent variables that define our disease state:
T , E, and I .

In response to this, we first grouped the exposed and infectious classes together such that the state of the exposed/infectious
class can be represented as an ordered pair of the form (E, I). Then we can form a transition matrix that describes the probability
of transitioning in and out of this exposed/infectious class. There are N + 1 different matrices of this type that can be formed,
where for each matrix the number of target cells, T (t) ∈ {0, 1, 2, . . . ,N }, is fixed. The form of these matrices is described in
more depth below. Each of these matrices should be a part of our transition matrix, so our final transition matrix will appear
as block matrix that is composed of these smaller matrices on the diagonal. This allows for the transition matrix to account
for changes in the number of exposed/infectious cells, but we also need to account for changes in the remaining independent
variable, T .

The diagonal of our transition matrix is composed of the blocks described above, so we use the off-diagonal blocks to include
diagonal matrices, denoted as DT (t) ,T (t+Δt) , that account for the probability of transitioning between the T (t) and T (t + Δt)
number of target cells. Like so:

M =



[
T (t) = 0

]
D0,1 0

D1,0
[
T (t) = 1

]
D1,2

D2,1
. . . . . . . . .

DN−1,N
0 DN ,N−1

[
T (t) = N

]


.
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Table 2: Movements of the transition events of independent variables to attain the (t, (e, i)) state.

Event Description State at t State at t + Δt (k, j, l)
Target cell becomes exposed

(
t + 1, (e − 1, i)

) (
t, (e, i)

)
(−1, 1, 0)

Exposed cell becomes infectious
(
t, (e + 1, i − 1)

) (
t, (e, i)

)
(0,−1, 1)

Infectious cell dies
(
t, (e, i + 1)

) (
t, (e, i)

)
(0, 0,−1)

Cellular restoration
(
t − 1, (e, i)

) (
t, (e, i)

)
(1, 0, 0)

No change
(
t, (e, i)

) (
t, (e, i)

)
(0, 0, 0)

In order to compute the probabilities contained in the transition matrix, we need to determine how a cell can move between our
independent classes. Given that we end up with (T , (E, I)) = (t + k, (e + j, i + l)) at time t + Δt, we want to find all the states
we could have been in at time t. We assume Δt is very small so that T (t), E(t), and I (t) can change by at most 1 in time Δt; thus
k, j, l ∈ {−1, 0, 1} (see Table 2, for the events and how the event may lead to state (t, (e, i))).

The probabilities of the events described in Table 2, are already known, and can be found in the Table 1. Using our knowledge
of states at time t that could result in the state (t, (e, i)) at time t + Δt, and the transition probability between these states, we
are able to find Pab (t +Δt), which can be thought of as the sum of the probabilities of transitioning into the state b = (t, (e, i)).
The probability of remaining in state b during the time Δt has the probability: 1-(probability of leaving state (t, (e, i))). Thus,
we have the following lemma:

Lemma 1. For t + e + i + d = N , the probability of leaving state a and entering state b while T (t) remains fixed in time Δt is
given by

Pab =
∑︁

e,i,j,l≥0
e+i=a

e+j+i+l=b

P(e,i) ,(e+j,i+l) (13)

where

P(e,i) ,(e+j,i+l) =


e
τE Δt (j, l) = (−1, 1)
i
τI Δt (j, l) = (0,−1)
− e

τE Δt −
i
τI Δt (j, l) = (0, 0)

0 otherwise.

(14)

You may have observed that the transition probability associated with no change (i.e., when (j, l) = (0, 0)) should be 1 −
βtVΔt − rD (N − t − e − i)Δt − e

τE Δt −
i
τI Δt instead of − e

τE Δt −
i
τI Δt; however, in some cases we may have several transitions

in which (j, l) = (0, 0). In these cases, we only want the 1 − βtVΔt − rD (N − t − e − i)Δt to appear in the sum once, where
as − e

τE Δt −
i
τI Δt should appear as many times as the no change transition occurs. It is important to note that because of this

discrepancy the ‘probabilities’ described above will be different from the actual probability when a = b. In this circumstance,
the actual probability is

1 − βtVΔt − rD (N − t − e − i)Δt + Paa, where a is the state (e, i).

We use the probabilities from Lemma 1 to determine the values in a matrix which we will call MM . To account for the extra
added terms, we will form another matrix with the missing values, called MR such that our transition matrix can be written as
M = MR +MM .

We will denote our entire transition matrix as M, where M is the sum of two matrices, MR and MM . We let MR contain
the off-diagonal blocks of M and the remaining probability terms that are not generated in Lemma 1, these probabilities are all
related to a change in the number of target cells. Each block describing the change in the number of target cells can be written
in the form of a diagonal matrix denoted as DT (t) ,T (t+Δt) .

In general, we have that

DT (t) ,T (t+Δt) =


βtVΔt + rD (N − t) 0 . . . 0

0 βtVΔt + rD (N − t − 1) . . . 0
...

...
. . .

...
0 0 . . . βtVΔt + rD (0)


where t = T (t). However, it is helpful to breakDT (t) ,T (t+Δt) into the sum of two matrices, described below. LetDT (t) ,T (t+Δt) =
BN−T (t)+1 +CN−T (t)+1, where the subscripts indicate the size of the matrix. IN−T (t)+1 is the (N −T (t) + 1) × (N −T (t) + 1)
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identity matrix, and

BN−T (t)+1 =



βtVΔt 0 0 . . . 0
0 βtVΔt 0 . . . 0
0 0 βtVΔt . . . 0
...

...
...

. . .
...

0 0 0 . . . βtVΔt


,

CN−T (t)+1 =



rD (N − t)Δt 0 0 . . . 0
0 rD (N − t − 1)Δt 0 . . . 0
0 0 rD (N − t − 2)Δt . . . 0
...

...
...

. . .
...

0 0 0 . . . rD (0)Δt


.

Thus, BN−T (t)+1 is a matrix containing the probabilities of one of the T (t) targets cell becoming exposed, and CN−T (t)+1 is a
matrix containing the probabilities of a dead cell becoming a target cell via cellular restoration. Writing D as the sum of these
two matrices is useful for writing MR, because we are now able to define MR in the following manner:

MR =



IN+1 − BN+1 − CN+1 CN+1 0 0 . . . 0
BN IN − BN − CN CN 0 . . . 0
0 BN−1 IN−1 − BN−1 − CN−1 CN−1 . . . 0
...

...
...

. . . . . .
...

...
...

...
. . . . . . C2

0 0 0 . . . B1 I1 − B1 − C1


.

MM contains the small transition matrices along the diagonal of M with the transition probabilities from Lemma 1. The
smaller transition matrices for fixed T values which exist on the diagonals of M will be denoted as Mt ; where the subscript is
the fixed number of target cells. Using the probabilities from Lemma 1, we can generate a general description of a Mt matrix:

Mt =



0 0 0 0 . . . 0 0
0 2

τI Δt − 2
τI Δt 0 . . . 0 0

0 0 3
τI Δt − 3

τI Δt . . . 0 0
...

...
...

. . . . . .
...

...
...

...
. . . . . .

...
0 0 0 0 . . . −N−t

τI Δt −N−t
τI Δt


=


P00 P01 . . . P0(N−t)
P10 P11 . . . P1(N−t)
...

...
. . .

...
P(N−t)0 P(N−t)1 . . . P(N−t) (N−t)


.

Using the notation described above, we are able to write our finished transition matrix, M as the sum of the matrices MR
and MM , where MR is as described above, and

MM =



M0 0 0 . . . 0
0 M1 0 . . . 0
0 0 M2 . . . 0
...

...
...

. . .
...

0 0 0 . . . MN


.

Notice that all rows of any Mt matrix sum to 0. Since the remaining entries in MM are all 0, we can see that any row
in MM sums to 0. In the matrix MR, BN+1 and C1 are both Zero-matrices, so adding matrices row-wise sums to the identity
matrix, which has 1’s along the diagonal and 0 everywhere else. Thus, every row in MR sums to 1. Since every row in MR sums
to 1 and every row in MM sums to 0, we can see that every row in M sums to 1+0 = 1. So, we have confirmed that M meets
the condition to be a transition matrix.

To useM as our transition matrix, there is still one problem we need to address. The wayM is described above still contains
a random variableV. Since we do not want any random variables in our matrix, this is something that needs to be changed. Note
that V represents the amount of virus that is present, and because the virus is produced by infectious cells, we would expect the
amount of virus to be a function of both the number of infectious cells, and the production rate at which infectious cells produce
new virons. Thus, we let V = V(i) = p · i, where i = I (t). When we go to replace V with p · i, we run into a new problem;
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Table 3: Possible transition events starting with e + i = y exposed/infectious cells.

(e, i) at time t (e + j, i + k) at time t + Δt Event Description

(y, 0) (y, 0)
(y − 1, 1)

No change
Exposed cell becomes infectious

(y − 1, 1) (y − 1, 1)
(y − 2, 2)

No change
Exposed cell becomes infectious

...
...

...

(1, y − 1) (1, y − 1)
(0, y)

No change
Exposed cell becomes infectious

(0, y) (0, y) No change

what is the value of I (t)? Recall that the exposed and infectious classes were grouped together, so at any point in the transition
matrix, if we have a exposed/infectious cells at time t and b, exposed/infectious cells at time t +Δt, how many infectious cells are
there at time t? The term V only appears on the main diagonal of M and in the BN−t off-diagonal matrices. Recall also that
each row of the transition matrix must sum to 1, so the value of V must be the same in both places it appears in one row; this
allows us to focus on the value of I (t) on the main diagonal.

Let y = e+ i, then y is the total number of exposed/infectious cells at time t, which functions as the index of the rows ofMt .
Consider the diagonal entry of an arbitrary yth row of Mt . The value of this entry represents the probability of transitioning
from y exposed/infectious cells to y exposed/infectious cells in time Δt, when there are T (t) = t target cells. We make a Table
of all transitions of y exposed/infectious cells to y exposed/infectious cells that have a non-zero probability (see Table 3).

We wish to find the expected value of i at time t when we transition from y to y exposed/infectious cells. This is given by the
lemma below.

Lemma 2. The expected number of infectious cells at time t when transitioning from y exposed/infectious cells to y exposed/
infectious cells is denoted E(i), and is given by

E(i) =
y2

2y + 1

(see the supplementary materials for the derivation).

Implications of Lemma 2 Any time we know the combined number of exposed/infectious cells, y, we can calculate the
expected number of infectious cells. We may also use this to replace the random variable V with the virus production rate per
infectious cell times the expected number of infectious cells, V (y) = p · y2

2y+1 . Thus, we are able to eliminate all random variables
from our matrix. Lemma 2 also provides us with the ability to approximate the number of infectious cells at any time point in
our stochastic simulations.

3.1 Computational realization
Recall that given a transition probability matrix, M, and a vector describing the state of the disease at time t0, which we will call
X (t0), one may determine the vector describing the likely state of the disease at time t0 + nΔt, X (t0 + nΔt) by

X (t0 + nΔt) = MnX (t0).

To carry out these sorts of computations, we need to know the form of the vector X (t) that describes the state of the disease at
time t. Since X (t) will be multiplied by M, and M is a (N+1) (N+2)

2 × (N+1) (N+2)
2 matrix, we know that X (t) must be a vector

of length (N + 1) (N + 2)/2. This makes sense because there are (N + 1) (N + 2)/2 possible states of the form (t, y, d), where
t = T (t), y = e + i, and d = D(t); and X (t) is a vector containing the probabilities of being in each of these states.

Recall also that M is a block-diagonal matrix, where each sub-matrix on the diagonal is similar to a transition probability
matrix where the number of target cells is fixed. If the fixed number of target cells is T (t), then the size of sub-matrix corre-
sponding to this number of target cells is (N − T (t)) × (N − T (t)). There should be a corresponding section of the vector
X (t) that has a length of N − T (t), as demonstrated in Figure 2.

The initial state vector, X (t0) should be able to specify the initial probabilities of the disease at a given state. Since we want
to begin with full certainty as to which state we are in at t0, we know that a block of X (t0) should be a vector containing the
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Figure 2: Basic form of Transition Matrix and Disease-State Vector. The boxed areas indicate regions corresponding to a fixed
number of target cells.

Figure 3: Scatterplot of the boundaries for Δt for 0 ≤ N ≤ 100 with function for the ideal Δt.

distributions of that state and adding up to one. For simplicity we let one 1 at the entry that represents part of our vector that
defines the initial disease state, and 0’s everywhere else. Thus, if we start with N − 3 target cells, then the vector X (t0) should
contain only 0’s except for the third to last section of the vector. This section of the vector should be the same size as the third to
last block of the matrix M. This matrix has a size of (N − (N − 3) + 1) × (N − (N − 3) + 1) or 4× 4, thus the corresponding
part of X (t0) has four entries.

If there are N − 3 target cells, then there are 3 cells remaining that fall into some other class; namely the exposed/infectious
class, or the dead class. There could be 0, 1, 2, or 3 exposed/infectious cells. Since y + d = 3 in this case, we have four possible
states of the form (t, y, d): (N − 3, 0, 3), (N − 3, 1, 2), (N − 3, 2, 1), or (N − 3, 3, 0). In fact, in general, if there are N − n
target cells, then there can be 0, 1, 2, . . . , n exposed/infectious cells, forming n + 1 possible states that are represented by an n + 1
length section of X (t0).

Since the section of X (t0) that corresponds to T (t) has the same number of rows as MT (t) , we would expect the rows
of that part of X (t0) and the rows of MT (t) to represent the same thing. Say, we wanted to start with 1 exposed/infectious
cell. Since there are N − 3 target cells, this means that there are 2 dead cells. The rows of MT (t) represent the number of
exposed/infectious cells before the time Δt has passed. So, having 1 exposed/infectious cell would put us in the second row,
because the first row refers to having 0 exposed/infectious cells. Thus, the corresponding part of X (t0) is

[
[ 0 1 0 0 ]T

]
.

Thus, if we wanted our initial disease state to be N − 3 target cells, 1 exposed/infectious cell, and 2 dead cells, then we have

X (t0) = [ 0 0 · · · 0 1 0 0 · · · 0]T .

Using our transition matrix and a vector describing an initial disease state, we can simulate the expected trajectory of the
disease by repeatedly multiplying the initial state vector by the transition matrix. Every time we multiply by the transition matrix,
we move forward by Δt in time. As stated previously Δt must be chosen to be small enough so that multiple events do not
occur simultaneously. When Δt is chosen to be too large, the simulation breaks down and produces impossible results (such as
probabilities as large as 10136), so this problem is quite easy to spot. WhenΔt is chosen to be too small, then the probability of an
event occurring during the time Δt is too small and the simulation indicates that there is no change from the initial state, even
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(a) (b)

Figure 4: (a) Probability of each state for 25 cells over 8000 iterations (approximately 2.88 seconds) starting at the disease state
(4, 21, 0). (b) Probability of each state for 100 cells over 80,000 iterations (approximately 0.43 seconds) starting at the disease
state (60, 5, 35) and approaching the state (0, 65, 35).

after a large number of iterations. Thus, there is an ideal range for the value of Δt. Due to our complexity, the ideal size of Δt
depends on the number of cells that are being simulated, so a relationship between N and Δt needs to be established. In order
to determine the appropriate form of this relationship, we first collected data on the bounds of Δt for each N to produce the
scatterplot on Figure 3.

If we let Δt = 10−i for some i ∈ N, then the ideal region for i appears to follow an approximately linear path in relation to
N . We let Δt be on the larger end of the ideal range for two reasons: problems due to Δt being too large are easy to spot and
a larger Δt saves computation. This linear path is approximated from the points (100, 9.5) and (30, 8) from Figure 3, and we
obtain −( 3

140N + 103
14 ). So, we let Δt = 10−⌊ 3

140N+ 103
14 ⌋ to simulate our stochastic model.

There are several patterns that appear in the stochastic simulations that occur at different time scales. We will begin with the
smallest time scale and work our way to a larger scale.

Simulation using 80,000 or less iterations
We begin by looking at what occurs when we simulate Mn ·X (0) for 0 ≤ n ≤ 80,000. This produces a wave-like pattern,
which can be seen in Figure 4.

We observe that as the probability of one state begins to decline, the probability of one other state rises. This propagates the
most likely state down to an eventual end state, at which point, the probability of this last state appears to approach 1.

Upon close examinations of the most probable states at any given time, we see that it is easy to predict the course of the
simulation, given the initial vector. We give an example of a simulation with a relatively small number of cells. In Figure 4(a), we
see that there are five states with non-zero probabilities. The initial state (the spike with probability 1 seen at iteration 0) can be
represented by the ordered triplet (4, 21, 0), which is of the form (t, y, d). The next state that emerges after approximately 1000
iterations is (3, 22, 0). The next state that peaks in probability is (2, 23, 0), then (1, 24, 0), and finally, the last state that appears
is (0, 25, 0). So, we have the following sequence between states:

(4, 21, 0) → (3, 22, 0) → (2, 23, 0) → (1, 24, 0) → (0, 25, 0).

Notice that the initial number of dead cells is always the most likely number of dead cells, meaning that if the initial disease
state is (t0, y0, d0), then states with non-zero probabilities will be of the form (tn, yn, d0) for 0 ≤ n ≤ 80, 000. One can also
see that the target cells tend to become exposed/infectious cells while the number of dead cells remain constant. Thus, on this
time scale, we see that initial states of the form (t0, y0, d0) go to (0, y0 + t0, d0) within 0 to 80,000 iterations. This pattern can
be viewed with a larger number of cells as shown in Figure 4(b), which appears same regardless of initial disease state. Without
looking further, we might be led to believe that given an initial disease state of (t0, y0, d0), that the disease approaches the state
(0, y0 + t0, d0) as t → ∞; however, this does not appear to be the case.

Simulations using 80,000 to 600,000 iterations
If we look at time values beyond 80,000 iterations, we see that the probability of the (0, y0 + t0, d0) state decreases, as the
probability of (0, y0 + t0 − 1, d0 + 1) increases. This new transition in probabilities occurs much slower, and the next state does
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(a) (b)

Figure 5: (a) Probability of each state for 25 cells over 550,000 iterations (approximately 3.3 minutes) starting at the disease
state (2, 8, 15), (b) Probability of each state for 5 cells over 8,000,000 iterations (approximately 48 minutes) starting at the disease
state (4, 0, 1).

not fully surpass the (0, y0 + t0, d0) state until approximately t0 + 550,000Δt for the simulations displayed in Figure 5.
In the simulation in Figure 5, we use N = 25 cells in 5(a) and N = 5 cells in 5(b) respectively. The first several spikes

demonstrate the pattern described above. The initial state (2, 8, 15) transitions to (0, 10, 15), which completes the sequence of
states described above. The end of this sequence is recognizable because the state that it leads to, the state (0, 10, 15) ( all target
cells having become infected) occurs with very high probability. This high probability is sustained for some time, but as one
can see in the above figure, that a new state (0, 9, 16) eventually surpasses this peak disease state in probability, which is in turn
surpassed by the state (0, 8, 17).

Subsequently, if we focus on a larger time scale, we see a new wave of high-probability states begin, forming a progression
from (0, 8, 17) to (0, 7, 18), (0, 6, 19), (0, 5, 20), (0, 4, 21), (0, 3, 22), (0, 2, 23), (0, 1, 24) and eventually (0, 0, 25). Once there
are 0 target and 0 exposed/infectious cells, the probability of state (0, 0, d0 + t0 + y0) appears to approach 1. Only the start of
this progression can be seen in Figure 5(a), however, this full pattern can be seen in Figure 5(b). It becomes very computationally
expensive to run simulations involving more than 8 million iterations, especially for large N , thus it is unclear if this the state
(0, 0, d0 + t0 + y0) persists, or if new state with higher probabilities eventually arise. This is a source for future research.

4 Spatial-Temporal Model
It has been reported experimentally that the spread of some species of virus, the vaccinia virus, depends on its interaction with
infected cells through a phenomenon referred to as the repulsion effect (Doceul et al., 2010), which has been modeled mathemat-
ically to provide insights on the spread of virus within-host. The reaction-diffusion model of Lai and Zou (2014) captures all the
dynamics described by Doceul et al. (2010) and predicts that viruses spread more rapidly when the repulsion effect is activated
in the diffusion model, which is contrary to previous modeling efforts, where either diffusion is assumed to be infinite (Baccam
et al., 2006) or isotropic following the Fickian law (Quirouette et al., 2020). The model by (Doceul et al., 2010) depends both
on the Fickian diffusion as well as on the concentration of infected cells with the assumption that the flux of free viral particles
depends on the concentration gradient of the virus and the concentration of infected cell:

J⃗v = Dv (w)
(
− 𝜕v
𝜕x

)
, (15)

where Dv (w) is taken as an increasing function of w. Its form is given by

Dv (w) = DPCF + g(w), with g(w) = aw
b + w

, (16)

where DPCF is the Fickian diffusion coefficient of free virions, the parameter a represents saturation level for the infected cells
and b indicates how quickly the cells get saturated. Setting a = 0 in g(w) implies no infected cell and as a consequence there
will be no repulsion effect. In the case of infected cells acting as chemorepellant for virus, the repulsion effect should force the
viruses down the concentration gradient of infected cells, this is nicely captured in (Wang et al., 2017a,b) as a chemotactic flux
of virus which depends on their own density, the density of infected cells, and the concentration gradient of infected cells.
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Figure 6: (a) Variation of g̃(w) = aw/(b + w) as function of w for a = 4.5 × 10−1m2d−1. (b) Contours of the spatial
spread of V(t, x) at distinct mobility rates. The coloured areas mark the regions in space where the viral population size is larger
than Ṽ = 0.1 for various values of a. The boundaries of these areas have slopes equal to the rate of spread, which correspond
to c = 0.0019 m · d−1 for a = 0.0 (red), c = 0.0073 m · d−1 for a = 4.5 × 10−6 m2 · d−1 (pink), c = 0.0214 m · d−1 for
a = 4.5 × 10−5 m2 · d−1 (orange), c = 0.0529 m · d−1 for a = 4.5 × 10−4 m2 · d−1 (black), and c = 0.0726 m · d−1 for a =
4.5 × 10−3 m2 · d−1 (green).

We adopt the framework of Quirouette et al. (2020) without the advection term and with the inclusion of density de-
pendence in the diffusion term. We assume that the viruses can spread in a self-organized manner within a host and could be
influenced by some components of the host environment (Galasso and Sharp, 1962). Thus, based on the considerations of pre-
vious efforts, we adopt a functional form for the density-dependent diffusion, which is similar to the model proposed by Lai and
Zou (2014) as a basis for our present analysis. However, to be consistent with the dimensional analysis of our virus model, we
interpret the density-dependent part, g(w), of our diffusion model in terms of a Michaelis-Menten-type model (Ingalls, 2013):

g̃(w) = aw
b + w

, (17)

where a is the maximum mobility rate in units of m2d−1 achieved by a virion due to its interaction with the infected cells, and
b, the number of uninfected cells at which the mobility rate is half of a.

The function g(w) is graphically presented in Figure 6(a) for variations of bwith fixed a, and shows that the ability of virions
to move due to interaction with infected cells is faster when there are lesser number of uninfected cells in their vicinity, this also
means that higher mobility rates could result to faster rate of diffusion of free virions.

The spatial-temporal model that captures the influenza infection kinetics is a system of partial differential equations written
as follows:

𝜕T (t, x)
𝜕t

= −βT (t, x)V (t, x) + rDD(t, x)

𝜕E(t, x)
𝜕t

= βT (t, x)V (t, x) − kE(t, x)

𝜕I (t, x)
𝜕t

= kE(t, x) − δI (t, x)

𝜕V (t, x)
𝜕t

= pI (t, x) − cV (t, x) − A(t) + 𝜕

𝜕x

(
DV (I)

𝜕V (x, t)
𝜕x

)
D(t, x) = N (x) − T (t, x) − E(t, x) − I (t, x).

(18)

When virus becomes available to target cellsT (x, t) they become infected by virusV (x, t) at a rate β and enter into the eclipse
phase E(x, t) where no viral production takes place. The eclipse cells turn into infectious cells I (x, t) at a rate k which in turn
produce virus at a rate p and die at a rate δ. The produced virus continues to infect new target cells and is cleared at a rate c due
to loss of infectivity or non-specific clearance.
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4.1 Spreading speed of influenza virus in R
To quantify the spreading speed of waves, we consider computing the asymptotic spreading speed in R. Since our model is
based on a reaction-diffusion equation, we adopt the technique introduced by Neubert and Parker (2004) and which has also
been used for a spreading virus population (Lai and Zou, 2014; Wang et al., 2017b). This technique requires fixing a threshold
value, say Ṽ , for the virus concentration V (t, x), below which virus is not detectable. Then, we find the position, x̃(t), which
corresponds to Ṽ , i.e. V (t, x̃(t)) = Ṽ . The asymptotic spreading rate is then given by the rate of change of x̃(t) as t becomes
very large, i.e. c = limt→∞

d̃x (t)
dt , where c is the spreading speed (see Figure 6(b)).

The upper respiratory tract is represented as a one-dimensional grid with the top of the respiratory tract at x = 0 cm and the
bottom at x = 0.3 m. In this model of the respiratory tract we include the conducting airways only up to the end of the bronchi
while excluding the nostrils. The length of the naso-pharyngeal tract was estimated by dividing the volume by the surface area as
estimated by Guilmette et al. (1997) for a human of 170 cm height, which is the height of the reference man (ICRP, 1975), the
consecutive lengths of the nostrils, larynx, trachea, and bronchi were obtained from morphometric quantification performed
by Raabe et al. (1976) and Stoneham (1993), the total length was found to be ≈ 0.3 m.

4.2 Computer realization
The objective of our numerical simulation experiments for the spatial-temporal model will be to better understand the dynamics
of the influenza virus infection in-host for various values of the mobility rate a in the presence or absence of cellular regeneration
and immune response respectively. For the simulations, we choose b = 500, the basic reproduction number

R0 =
(
βpNδ
c

)
=

(
3.2 × 10−5 · 0.046 · 4 × 108 · 5.2

5.2

)
= 5.89 × 102 ≫ 1.

Result I: Effect of variations of mobility rates on infection dynamics with no cellular regeneration

In this simulation experiment, the mobility rate was varied in the absence of cell regeneration. Virus is first deposited initially
at xd = 0.15 m, xd = 0.01 m and xd = 0.25 m respectively (see Figure 7. The mobility rate is varied in increasing steps of one
order of magnitude from 4.5 × 10−6 m2 · d−1 to 4.5 × 10−1 m2 · d−1, and corresponds to the colors blue, green, cyan, magenta,
dashed red and dashed blue (coincides with black line). We investigated the infection dynamics by plotting the fractions of target
cells and the concentration of the virus for the variations of the mobility rates at different deposition depths. Spatial simulations
show that virus becomes available to target cells gradually as it diffuses away from the site of deposition such that neighbouring
cells become infected first, and further cells follow (see Figure 9. When compared to the ODE model, target cell infection takes
place at a slower pace depending on the mobility rate. The extreme values a = 0 and a = ∞ corresponding to red and black
lines respectively behave like the ordinary differential equations. Due to asymmetry in the site of deposition with respect to the
respiratory tract when xd = 0.01 m, virus diffuses out of the top of the respiratory tract before it gets to the bottom of the
respiratory tract. This can be seen as a slight drop in the concentration of the virus followed by a decay once virus has crossed the
lower end of the respiratory tract as well. When the target cells are completely exposed or infected, viral titer decay is observed
and occurs sooner as mobility rate increases. When virus is deposited at xd = 0.15 m, it reaches opposite ends of the respiratory
tract at the same time and one phase of decay is observed, this is even more obvious when virus is deposited at xd = 0.25 m.

Result II: Variations in mobility rates with cellular regeneration

The inclusion of the cellular regeneration into the spatial-temporal model represents a kind of reservoir of uninfectible and
pluripotent cells that are responsible for repairing epithelial damage due to the influenza virus infection, which means that there
is no damage that cannot be repaired by the reservoir cells. We find that a regeneration rate rd = 10d−1 is sufficient to maintain
a chronic infection in the case of immediate regeneration of dead cells as shown in Figure 8 for an infection peaking at day 2 for
extreme mobility rates of a = 0 and a = ∞ respectively. We observed that the fraction of target cells balances (or plateaus) after
few days, the earliest was after 2 days. Cell regeneration has the effect of persisting the propagation of the virus population.

Result III: Effect of mobility rates in virus spreading

In the first simulation experiments, we investigate how the mobility rate affects the infection dynamics in the absence of cellular
regeneration and so we focus on the structure of the emerging virus wave patterns. Most of the parameters used are adopted
from Quirouette et al. (2020) as presented in the Table 4. The concentration of virus in the system was measured over a period
of time. The virus was deposited initially at xd = 0.15m and once infection and proliferation starts, the virions spread on either
side of the respiratory tract depending on the value of the mobility rate a. We investigated the case when the mobility rate is
zero (a = 0) (see Figure 9(a) and the case when the mobility rate is set to a = 4.5 × 10−6m2d−1 (see Figure 9(c)). For better



244 B. O. EMERENINI, R. WILLIAMS, R. N. G. REYES GRIMALDO, K. WURSCHER, E. R. IJIOMA

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14
10

-2

10
0

10
2

10
4

10
6

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14
10

-2

10
0

10
2

10
4

10
6

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14
10

-2

10
0

10
2

10
4

10
6

Figure 7: Effect of varying the mobility rate in the absence of cell regeneration and immune response. Virus is deposited
initially at xd = 0.15 m (top row), xd = 0.01 m (middle row) and xd = 0.25 m (bottom row). The ordinary differential
equations (ODEs) assume infinite diffusion (a = ∞). The mobility rate is varied in increasing steps of one order of magnitude
from 4.5×10−6 m2 · d−1 to 4.5×10−1 m2 · d−1, and corresponds to the colors blue, green, cyan, magenta, dashed red and dashed
blue (coincides with black line). The extreme values a = 0 and a = ∞ (ODE) correspond to red and black lines respectively.
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Figure 8: Effect of varying the mobility rate in the presence of cell regeneration. Virus is deposited initially at xd = 0.15 m.
The mobility rate is varied in increasing steps of one order of magnitude from 4.5 × 10−6 m2 · d−1 to 4.5 × 10−1 m2 · d−1, and
corresponds to the colors in blue, green, cyan, magenta, dashed red and dashed blue (coincides with black line). The extreme
values a = 0 and a = ∞ (ODE) correspond to red and black lines respectively.

Table 4: Default initial conditions and parameter values of the target cell limited model. All parameters are from Baccam et al.
(2006) except for the viral production p that was evaluated in this work.

symbol parameter value
T0 number of initially available target cells 4 × 108 cells

E0, I0 number of initially infected cells 0
D0 number of initially dead cells 0

V0 initial viral inoculum 7.6 × 10−2TCID50/mL
1/τE lifespan of exposed cells E 6 h
1/τI lifespan of infectious cells I 4.6 h

c viral clearance rate 4.6 h
β infection rate of cells by virus 3.2 × 10−5 (TCID50/mL)−1 · d−1
p virus production rate 0.49 TCID50/mL · d−1

comparison, the two simulation experiments where presented in one plots (see Figure 9(e)). By setting the mobility rate to zero,
the wave front is narrow with delayed proliferation. On the other hand when the mobility rate is set to a = 4.5 × 10−6m2d−1,
the wave front becomes wide with proliferation and spreading of the virus beyond the initial deposition dept. In the second
simulation experiments, we investigate how the mobility rates affects the infection dynamics when there is cellular regeneration
in the system, we investigate the structure of the emerging virus wave patterns. We also investigated the case when the mobility
rate is zero (a = 0) (see Figure 9(b) and the case when the mobility rate is set to a = 4.5 × 10−6m2d−1 (see Figure 9(d)). For
better comparison, the two simulation experiments where presented in one plots (see Figure 9(f)). We observed that when the
mobility rate is set to zero, the wave front is narrow but with proliferation underneath the waves, this is similar in the case of
a = 4.5 × 10−6m2d−1 except that the virus wave pattern is wide with rapid spreading of the virus beyond the initial deposition
depth.

5 Sensitivity Analysis
Sensitivity analysis allows us to determine which parameters are most influential to the model output. We use this information
to examine biological implications such as model corroboration, research prioritization, model simplification, identification
of critical areas, and baseline parameter estimates (Saltelli et al., 2007, p. 34). In this study, we applied the Latin Hypercube
Sampling (LHS) method which will give us the necessary information to rank our parameters’ degree of importance through
the Partial Rank Correlation Coefficient (PRCC) method. LHS is a stratified sampling without replacement technique, first
introduced by McKay et. al. in 1979, that allows us to sample the entire parameter space more efficiently than similar Monte
Carlo methods. LHS splits each of the k parameter distributions into N equally probable parts where N is at least greater than
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Figure 9: Spatial-temporal profiles of V (t, x) for varying mobility rate. Virus is deposited initially at xd = 0.15 and once
infection and proliferation starts, the virions diffuse on either side of the RT depending on the value of a, this is shown in the
absence of cellular regeneration (a,c,e) and with cellular regeneration (b,d,f). Comparison of the extent of spread in the two
profiles shown in (a),(c) and (b), (d) re presented in (e) and (f) respectively. The wave profile in red indicates the case when a = 0
and in black when a = 4.5 × 10−6m2d−1.
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Figure 10: The title of the given section of graphs is the output measure for the given case and is along every y-axis. The
parameter above every individual graph lies on the x-axis.

k + 1, although it is often much greater for the sake of accuracy. These distributions are used to create the LHS input matrix.
This matrix has N rows, one for each simulation, and k columns, one for each parameter. The kth entry of each row randomly
selects an interval from the given parameter’s probability distribution without replacement. This process is repeated to create
N unique combinations of the parameters that spans the entire parameter space.

From this, aN ×1 output matrix is generated where each entry is the output value from the corresponding simulation. Both
the input and output matrices are then rank transformed according to the magnitude of the values along a column. The rank
transformed matrices replace the raw data with values from one to N. We complete this transformation in order to compute the
PRCC values which are explained below (Marino, 2008).

Before choosing PRCC, it is important to check for monotonicity between parameters and outputs. If we lack this, PRCC
values are not accurate. If monotonicity does not hold, it is sometimes possible to truncate the LHS parameter ranges into
monotonic regions (Gomero, 2012). PRCC uses the rank transformed data, not the raw data, to provide a measure of the linear
association between a specific parameter and the output after the linear effects from the remaining inputs are removed. PRCC
values range from -1 to 1, where a positive sign indicates a direct relationship between the parameter and the output value while
a negative sign indicates an inverse relationship between the two. The magnitude of the PRCC value represents the importance
of the parameter to the model output. The further the value is from zero, the more influential it is (Marino, 2008).

The E Cases output measure is defined by βTV − E
τE . When we look at these graphs shown in Figure 10, we are considering
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Figure 11: The set up is the same at the above graphs.
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Figure 12: On the y-axis we have the PRCC values and along the x-axis each bar corresponds with the given parameter.

the relationship between the given parameter and the difference between cells entering the E compartment, βTV , and the cells
exiting the E compartment,E/τE . The parameter lies on the x-axis in the shown graphs. It is important to note that all these plots
are monotonic, so we can go on to consider the PRCC values as accurate. From Figure 12, the parameters’ degree of influence
on the E Cases output measure ranked from least to greatest are: c < 1

τI < β < p < 1
τE < rD. We note that 1/τE , 1/τI , and c have

an inverse relationship with the output while β, rD, and p have a direct relationship on the data. It is interesting to note that the
parameters with positive PRCC values all fall into the numerator of R0 while the parameters with negative PRCC values fall
into the denominator.

The number of infectious cases is measured by E
τE −

I
τI , this is referred to as I cases in the associated plots shown in Figure 10.

From Figure 12, the parameters that impact the number of infectious cases listed from least to most impact are: 1
τE < c < β < p <

1
τI < rD, where the parameters rD, p, and β are directly proportional to the number of infectious cases and the parameters 1/τI
and c are inversely proportional to the number of infectious cases. We notice that for the number of infectious cases, parameters
that are directly proportional to I cases that also appear in R0 are the parameters that appear in the numerator of R0; namely p
and β. Similarly, the parameters that are inversely proportional to I cases that also appear in R0 are the parameters that appear
in the denominator of R0; specifically 1/τI and c.

The number of infection induced deaths is calculated using I/τI which is shown in Figure 11. The parameters that impact the
number of infection induced deaths, written as I deaths, ranked from least to most impactful to get I

τI < 1
τE < c < p < β < rD,

this is again from Figure 12. Parameters that are directly proportional to the number of infection induced deaths are rD, β, p,
and 1/τE , while parameters that are inversely proportional to the number of infection induced deaths are c and 1/τI . The same
relationship can be seen between the proportionality of parameters and R0 in E cases and I cases can be seen in I deaths.

The number of virons cleared is given by cV , shown in Figure 11, is effected by the following parameters, ranking from least
to the most impactful, as shown in Figure 12: 1

τE < β < 1
τI < rD < p < c. The parameters c, p, rD, β, and 1/τE are all directly

proportional to the amount of virus cleared, whereas 1/τI is inversely proportional to the number of virons cleared. Since c is
directly proportional to this measure, we do not see the same pattern related to R0 as we did in the previous measures. This
change follows our assumption, however, due to the amount of virus cleared not being directly related to the trajectory of the
virus. When V clear is very high, it could either be due to the host being very efficient at clearing out the virus, or it could be
because the host is sustaining the virus for a long time. Thus, the value of V clear is not clearly related to whether the state of
the virus is approaching endemic or disease-free equilibrium.

Sensitivity analysis revealed that rD, p, and β are directly proportional to all four measures of the disease. 1/τI was found
to be inversely proportional to all four measures of the disease, and clearance rate, c, was found to be inversely proportional to
the number of exposed cases, the number of infectious cases, and the number of disease-induced deaths. In the monotonicity
plots, we can observe that the plot corresponding to 1/τE is not strictly monotonic. Sensitivity analysis using PRCC requires
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monotonicity, thus this may be a source of error in our analysis. The ranking of how much each parameter affects the number of
exposed cases, infectious cases, cell deaths, and virons cleared is consistent regardless of the number of runs used. However, the
magnitude of the PRCC values does change depending on the number of runs used. In some cases, this difference is extreme;
such as when comparing the PRCC values of 1/τE and β for the number of virons cleared using 100 runs to the PRCC values
of 1/τE and β for the number of virons cleared using 2000 runs. When using 100 runs, 1/τE has a PRCC value of 0.033 and β
has a PRCC value of 0.523, making for a 0.490 difference. When using 2000 runs, 1/τE has a PRCC value of 0.192 and β has a
PRCC value of 0.493, making a difference of 0.301. The degree to which the difference between the PRCC values of 1/τE and
β changes depending on the number of runs is concerning and may be the result of the non-monotonicity of 1/τE . Since the
largest number of simulations used (in this case N = 2000) should be the most accurate, we will examine the results when that
number of runs is used. For information regarding the 100, 500, and 1000 runs, see the supplementary materials for this article.

For 2000 simulations, the PRCC values of each parameter all have p < 1.2 · 10−9, so each parameter significantly effects the
number of expose cases, infectious cases, deaths due to infection, and virons cleared.

6 Discussion
The Basic Reproduction Number, R0 was calculated to be βpN/

(
c 1
τI

)
. The numerator of R0, βpN , contains values related

to the transmission and production of the virus, and the denominator, c 1
τI , contains values related to the death and clearance

of the virus. Thus, when the production and transmission of the virus is greater than the death and clearance of the virus, we
see a spread in infectious and a tendency to the locally asymptotically stable endemic equilibrium. On the other hand, when
production and transmission is less than the death and clearance of the virus, the disease tends to the locally asymptotically
stable disease-free equilibrium. The goal in influenza treatment then, would be to manipulate the conditions of the disease in
order to produce a situation that approaches the disease-free equilibrium. Thus, it is important to determine what parameters
contribute the most to hallmarks of the disease.

Partial Rank Correlation Coefficients were used to determine how different parameters contributed to important measures
of the disease including, the number of exposed cases, the number of infectious cases, the number of infection-induced deaths,
and the number of virons cleared. Health professionals would ideally like to minimize the first three of these measures. In-
terestingly, it was found that cellular restoration had the strongest positive relationship with the number of exposed cases, the
number of infectious cases, and the number of cell deaths due to infection. This finding may indicate that in some cases it would
be helpful to slow down cellular restoration as it is positively associated with the measures we wish to minimize. No causation
is established in this study, however, the detrimental role of cellular restoration on the trajectory of the spread of influenza has
been documented in other cases (Deecke and Dobrovolny, 2018). In particular, chronic cases of influenza cannot occur without
cellular restoration, so this parameter clearly plays a role in the perpetuation of the influenza infection.

It was also noted from the sensitivity analysis that parameters that were directly proportional to the number of exposed
cases, the number of infectious cases, and the number of disease-induced deaths tend to appear in the numerator ofR0, whereas
parameters that are indirectly proportional to these measures tend to appear in the denominator ofR0. This makes sense because
each of these three measure impact the trajectory of the disease (whether it tends to endemic state or disease-free), which is
precisely what R0 measures.

Results from the stochastic simulations indicate that influenza first spreads extremely rapidly, achieving a state in which
all target cells are either exposed or infectious very quickly. Comparatively, it takes a much longer time for the exposed and/or
infectious cells to die. To illustrate; for a population of 5 cells with initially 0 exposed/infectious cells it takes approximately 10-11
seconds for all the original target cells to become exposed/infectious, and it is not until at least 3 minutes have passed since the
initial time that the first cells begin to die. These findings indicate that any treatment for influenza intended to curtail the spread
of the virus within the host would need to be administered and be effective very soon after initial exposure to the influenza virus.
These findings are supported by biological evidence that early administration of antiviral treatment for patients with influenza
is an important factor of recovery (Zheng et al., 2018).

From the simulation experiments of the spatial-temporal model, we conclude that (i) For any fixed b, the wave speed depends
on the mobility rate, a; (ii) as a → ∞, the virus reaction-diffusion model is equivalent to the corresponding ODE model; (iii) the
initial deposition position, xd, affects the infection kinetics, but has no consequence when a is large; (iv) increase in diffusion rate
increases the consumption of target cells; and (v) the wave profiles of the solutions in Figure 9 suggest the existence of traveling
wave solutions.

7 Future Directions
In the future, it would be important to compare the models developed in this article with data collected regarding the spread of
influenza within-host. Doing so would allow us to verify the accuracy of our model as well as refine our models using parameter
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estimation. Currently, we are using values for our parameters that previous studies have used in their models (Bai et al., 2019;
Beauchemin and Handel, 2011a; Quirouette et al., 2020); however, it may be more beneficial to use collected biological data to
estimate our parameters through a process known as parameter estimation. It would be possible to utilize the results from the
stochastic simulations to determine the time until peak infection (when the maximum number of exposed and infectious cells
is achieved). This time appears to depend both on the number of cells present, N , as well as the initial state. In particular, it may
be useful to examine how the initial number of infectious cells impacts the time until peak infection and if/how the relationship
is mediated by N . The tools developed in this study are sufficient to investigate this question, but due to the computationally
expensive nature of the simulations, this question remains unanswered.
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