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ABSTRACT
We propose the SH model, a simplified version of the well-known SIR compartmen-
tal model of infectious diseases. With optimized parameters and initial conditions,
this time-invariant two-parameter two-dimensional model is able to fit COVID-19
hospitalization data over several months with high accuracy (e.g., the root rela-
tive squared error is below 10% for Belgium over the period from 2020-03-15 to
2020-07-15). Moreover, we observed that, when the model is trained on a suitable
three-week period around the first hospitalization peak for Belgium, it forecasts the
subsequent two months with mean absolute percentage error (MAPE) under 4%.
We repeated the experiment for each French department and found 14 of them
where the MAPE was below 20%. However, when the model is trained in the in-
crease phase, it is less successful at forecasting the subsequent evolution.
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1 Introduction
Compartmental models, and in particular the well-known SIR model (Kermack et al., 1927), have been widely used to model
infectious diseases since the early 20th century (see Hethcote, 2000, and references therein). Letting S (t), I (t), andR(t) denote
the number of susceptible, infectious and removed (or recovered) individuals at time t, and letting ¤S (t), ¤I (t), and ¤R(t) denote
their time derivatives, the SIR model consists in the following three-dimensional continuous-time autonomous dynamical sys-
tem

¤S (t) = − β
N S (t)I (t) (1a)

¤I (t) = β
N S (t)I (t) − γI (t) (1b)

¤R(t) = γI (t), (1c)

where N = S (t) + I (t) + R(t) is the constant total population and β and γ are parameters. The SIR model, and several
(sometimes deep) variations thereof, have been applied in several works to model the COVID-19 dynamics (see, e.g., Liu et al.,
2020; Atkeson, 2020; Calafiore et al., 2020; Fanelli and Piazza, 2020; Carletti et al., 2020; Kozyreff, 2021; Nesterov, 2020b,a;
Djidjou-Demasse et al., 2020; Abrams et al., 2021) with known limitations (Roda et al., 2020; Baek et al., 2020; Wang and
Flessa, 2020; Comunian et al., 2020). In (Bhanot and DeLisi, 2020), an SIR-like model is used to make long-term forecasts.
However, at the time of writing this paper, it appears that studies are still rare (see Singh and Mohapatra, 2020; Ghosh and
Chakraborty, 2020; Ghanam et al., 2020) where the SIR-like model parameters and initial conditions are learned on a “train”
part of the available data in order to predict a subsequent “test” part, making it possible to assess the forecast accuracy of the
model.

In this paper, we adapt the SIR model to the situation where (i) S, I and R are hidden variables but I (t) is observed through
a “proxy” H (t) = αI (t), where α is unknown but constant, and (ii) not only β and γ but also the total concerned population N
are unknown. In the context of the COVID-19 application, the proxy H will be the total number of lab-confirmed hospitalized
patients; the equation H (t) = αI (t) thus posits that a constant fraction of the infected people is hospitalized. The proposed
adapted SIR model, which we term SH model, is given in (8). It has two state variables (S̄—a scaled version S—and H) and two
parameters (β̄—which lumps together the parameters β, N , and α—and γ).
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We leverage the proposed SH model as follows in order to make forecasts regarding hospitalization. Given observed values
(Ho (t))t=ti ,...,tc , we estimate the parameters β̄, γ, and the initial conditions S̄ (ti) and H (ti) of the SH model. Then we simulate
the SH model in order to predict (H (t))t=tc+1,...,tf for a specified final prediction time tf . This approach thus relates to the areas of
parameter estimation (for obvious reasons), data assimilation (for the generation of the initial conditions) and machine learning
(for the train-test approach).

The paper is organized as follows. The available data is reviewed in Section 2. The SH model is derived in Section 3. Several
methods to estimate the parameters and initial conditions are presented in Sections 4 and 5. Experimental results are reported
in Section 6 and conclusions are drawn in Section 7.

2 Data and Notation
In the experiments (Section 6), we will use a COVID-19 dataset for Belgium1 that provides us with the following data for t =
ts, . . . , te, where ts is 2020-03-15 and te is 2021-05-15:

• Ho (t): total number of lab-confirmed hospitalized (i.e., at the hospital) COVID-19 patients on day t, including intensive
care unit (TOTAL_IN column);

• Eo (t): number of COVID-19 patients entering the hospital (i.e., number of lab-confirmed hospital intakes) on day t
(NEW_IN column);

• Lo (t): number of COVID-19 patients discharged from the hospital on day t (NEW_OUT column).

The subscript o stands for “observed”.
We will also mention results obtained with a dataset for France2 where ts is 2020-03-18 and te is 2021-05-16.

2.1 Discussion

In the data for Belgium, there is a mismatch betweenHo (t) andHo (t− 1)+Eo (t) −Lo (t) for most t, andHo (ts)+
∑te

t=ts+1 Eo (t) −
Lo (t) is significantly larger than Ho (te). This can be due to the patients who get infected at the hospital (they would be counted
in Ho without appearing in Eo) and to the patients who die at the hospital (they would be removed from Ho without appearing
in Lo). In order to remedy this mismatch, we redefine Lo (t) by Lo (t) ≔ −Ho (t) + Ho (t − 1) + Eo (t).

For the French data, we sum the “rad” (daily number of new home returns) and “dc” (daily number of newly deceased
persons) columns to get Lo (t). Since there is no column for Eo, we define Eo (t) = Ho (t) −Ho (t − 1) + Lo (t).

Several other COVID-19-related data are available for Belgium and France. In particular, the daily number of infected indi-
viduals, Io (t), is also reported by health authorities. However, the decision process to admit individuals at the hospital is believed
to be more stable over time than the decision process to test individuals, hence the hospitalization data is a priori more prone to
be modeled by a dynamical system with time-invariant parameters. Moreover, for the authorities, predicting H is more crucial
than predicting I . Therefore, as in (Kozyreff, 2021), we focus on H .

3 Models

3.1 Case Hospitalization Ratio

We assume that, for all t,
H (t) = αI (t) (2)

where α is unknown but constant over time. As already mentioned, (2) posits that a constant fraction of the infected people is
hospitalized.

Equation (2) is reminiscent of Carletti et al. (2020, eq. (3)), where the number of dead individuals plays the role of H and
α is time dependent.

1https://epistat.sciensano.be/Data/COVID19BE_HOSP.csv obtained from https://epistat.wiv-isp.be/covid/
2Data file donnees-hospitalieres-covid19-2021-05-16-19h08.csv was obtained from the website https://www.data.gouv.fr/en/

datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/. Department 46 was removed from the data due to abnormal val-
ues in the “rad” column.

https://epistat.sciensano.be/Data/COVID19BE_HOSP.csv
https://epistat.wiv-isp.be/covid/
https://www.data.gouv.fr/en/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/
https://www.data.gouv.fr/en/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/
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3.2 Observation Models
We assume the following observation models with additive noise:

Ho (t) = H (t) + εH (t) (3a)
Eo (t) = E(t) + εE (t) (3b)
Lo (t) = L(t) + εL (t). (3c)

The variables with the subscript o stand for the values provided in the datasets; see Section 2. The variables without the subscript
stand for the values given by the forthcoming model. The ε variables account for the discrepancies between the former and the
latter.

We do not make any explicit statistical assumption on the ε variables in this work. However, we point out that if we (question-
ably) assume them to be independent Gaussian centered random variables, then some subsequent estimators admit a maximum
likelihood interpretation.

3.3 Proposed SH Model
Multiplying (1a) and (1b) by α, and further multiplying the numerators and denominators by α, we obtain the equivalent system

α¤S (t) = −
β
Nα

αS (t) αI (t) (4)

α¤I (t) =
β
Nα

αS (t) αI (t) − γαI (t). (5)

Letting

S̄ ≔ αS (6)

β̄ ≔
β
Nα

(7)

and using (2), we obtain the simplified SIR model

¤̄S (t) = −β̄S̄ (t)H (t) (8a)
¤H (t) = β̄S̄ (t)H (t) − γH (t) (8b)

which we term the SH model. (The “S” in this SH model can be interpreted as the number of individuals susceptible of being
hospitalized.) The SH model has only two parameters (β̄ and γ), one hidden state variable (S̄) and one observed state variable
(H) with observation model (3a).

Note that, in the SH model (8), the number of patients entering the hospital by unit of time is

E(t) ≔ β̄S̄ (t)H (t) (9)

and the number of patients leaving the hospital by unit of time is

L(t) ≔ γH (t). (10)

4 Estimation and Prediction Method
The goal is now to leverage the SH model (8) in order to predict future values of H based on its past and current observations
(Ho (t))t=ts ,...,tc . To this end, we have to estimate (or “learn”) four variables, which we term estimands: the two parameters β̄ and
γ and the two initial values S̄ (ti) and H (ti), where ti is the chosen initial time for the SH model (8). One possible approach is to
minimize some error measure between the simulated values (H (t))t=ti ,...,tc and the observed values (Ho (t))t=ti ,...,tc as a function
of the four estimands. However, the error measure is not available as a closed-form expression of the four estimands, and this
makes this four-variable optimization problem challenging. We show in this section that it is possible to estimate H (ti) and
γ separately. This leaves us with an optimization problem in the two remaining estimands β̄ and S̄ (ti), making it possible to
visualize the objective function by means of a contour plot.
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4.1 Train and Test Sets

To recap, we have ts ≤ ti < tc < te. The provided dataset goes from ts to te. The test set, (Ho (t),Eo (t),Lo (t))t∈[tc+1,te ] , is
not available to the forecasting algorithm; it is revealed only to compute the forecasting error (see Section 6.1). The SH model is
initialized at ti , and we refer to the data (Ho (t),Eo (t),Lo (t))t∈[ti ,tc ] as the train set, though it is legitimate to widen it to t ∈ [ts, tc].

4.2 Estimation of H (ti)
We simply take

H (ti) ≔ Ho (ti).

In view of (3a), this amounts to εH (ti) = 0.
We could have chosen instead H (ti) as a filtered version of Ho (ti) in order to reduce the impact of the weekly variations in

Ho (t). Those weekly variations, visible in Figure 1 in the form of equally spaced ripples, are due to the fact that fewer patients
are discharged during the weekend. However, such a filter did not yield better forecasts in our experiments, and we thus opted
for the above-mentioned H (ti) ≔ Ho (ti).

4.3 Estimation of γ
We have L(t) = γH (t), see (10). In view of the observation model (3), we can estimate γ by a ratio of means:

γ̂RM =
∑tc

t=ti Lo (t)∑tc
t=ti Ho (t)

. (11)

A theoretical justification of the choice of the ratio-of-means estimator can be found in (Schoukens and Pintelon, 1991); or
see (Schoukens, 2018, §1.2).

Note that ti in the expression of γ̂ can legitimately be replaced by any time between ts and tc. Only data in the test set, i.e.,
occurring after tc, are unavailable in the variable estimation phase.

4.4 Joint Estimation of β̄ and S̄ (ti)
Now we have to estimate the two remaining estimands, namely β̄ and S̄ (ti). We choose the following sum-of-squared-errors
objective function

ϕ(β̄, S̄ (ti)) = cH
tc∑︁
t=ti

(H (t) −Ho (t))2 + cE
tc∑︁
t=ti

(E(t) − Eo (t))2 + cL
tc∑︁
t=ti

(L(t) − Lo (t))2, (12)

where the c coefficients are parameters, all set to 1 in our experiments unless otherwise stated. In (12), H (t), E(t) (see (9)), and
L(t) (see (10)) are given by the (approximate) solution of the SH model (8) in which (i) H (ti) and γ take the values estimated as
above, and (ii) β̄ and S̄ (ti) take the values specified in the argument of ϕ.

Several methods exist to compute the required (approximate) solution of the SH model (8); see (Barlow and Weinstein,
2020). Since the method will have to be repeatedly called by the optimization solver, we opt for the simplicity of the explicit
Euler method with a time step of one day (as in, e.g., Vinitsky et al., 2021), yielding, for t = ti , . . . , tc − 1,

S̄ (t + 1) = S̄ (t) − β̄S̄ (t)H (t) (13a)

H (t + 1) = H (t) + β̄S̄ (t)H (t) − γH (t). (13b)

As an alternative numerical integration method for (8), we tested SciPy’s explicit Runge–Kutta method of order 5(4) with
default parameters. In comparison with Euler (13), the forecast error was most often in favor of the Runge–Kutta method, but
always by a narrow margin, and the execution time with Runge-Kutta was more than four times the one with Euler. For these
reasons, we decided to retain (13). This choice also leads to simpler developments in Section 5.1.

Now that the objective function ϕ (also termed “cost function” or “loss function”) is defined, we let the estimated (β̄, S̄ (ti))
be the (approximate) minimizer of ϕ returned by some optimization solver. The initial guess that we give to the solver is the
outcome of the successive estimation method that we will present in Section 5.1. (If this proposed initial guess is negative, a
situation that we observed on rare occasions in the late part of the decrease phase, then we take its opposite.)
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4.5 Prediction of H
Recall that the time range between ti and tc is the train period and the time range between tc + 1 and te is the test period. In order
to predict (i.e., forecast) the values ofH over the test period, we apply the above procedure to estimate the four estimand variables
β̄, γ, S̄ (ti), and H (ti), and we compute the solution H (t) of (13) for t from ti to te. The prediction is then (H (t))t=tc+1,...,te . The
discrepancy between (H (t))t=tc+1,...,te and (Ho (t))t=tc+1,...,te reveals the accuracy of the prediction.

5 Alternative Estimation and Prediction Methods

5.1 Successive Estimation of β̄ and S̄ (ti)
As an alternative to Section 4.4, we now present a method to estimate β̄ independently. We do not recommend this alternative,
as we have observed that it usually yields less accurate forecasts. However, it provides a convenient initial guess for Section 4.4,
and it also sheds light on the various forecast accuracies observed in Section 6.

From (13a) and (9), we obtain
E(t + 1)
H (t + 1) −

E(t)
H (t) = −β̄E(t).

Summing both sides yields the following estimator of β̄:

̂̄β = −
Eo (tc)
Ho (tc) −

Eo (ti)
Ho (ti)∑tc−1

t=ti Eo (t)
. (14)

Finally, in view of (9), we choose the following estimator for S̄ (ti):

̂̄S (ti) =
Eo (ti)̂̄βHo (ti)

.

For the observation model (3), under the assumption that |εH (t) | ≤ ε and |εE (t) | ≤ ε for all t, we have the following error
bound, where higher order terms in ε are neglected:������

Eo (tc)
Ho (tc)∑tc−1

t=ti Eo (t)
−

E (tc)
H (tc)∑tc−1
t=ti E(t)

������ ≲ ε
H (tc)

∑tc−1
t=ti E(t)

(
1 +

E(tc)
H (tc)

+
E(tc) (tc − ti)∑tc−1

t=ti E(t)

)
,

and likewise for the second term in (14).
Consequently, the estimation of β̄ should be the most accurate when Eo (t)Ho (t) is the largest. This occurs slightly before

the peak of Ho (t). This means that the estimation of β̄ should be the most accurate for a train period slightly before the peak.
However, this does not mean that this position of the train period gives the most accurate forecasts, as we will see below.

Let us consider the situation where the train period is located before the peak. Then the estimation of β̄ is less accurate,
and this impacts ̂̄S (ti). At the initial time ti , this does not impact the right-hand term of (8b) in view of the definition of̂̄S (ti). However, an overestimation of β̄ will induce an underestimation of S̄ (ti) and, in view of (8a), a subsequent even stronger
underestimation of S̄ (t). Hence the first term of (8b) will be underestimated. As a consequence, the peak in H will appear
sooner and lower. The case of an underestimation of β̄ leads to the opposite conclusion, namely a peak in H that appears later
and higher. In summary, the further before the peak the train period is located, the more inaccurate the position and height of
the peak is expected to be.

Finally, let us consider the situation where the train period is located after the peak. Then we can make the same observations
as in the previous paragraph, except that predicting the peak is now irrelevant. Moreover, we are in the decrease phase, where
the first term of (8b) (which involves β̄ and S̄ (t)) is smaller than the second term (which does not involve these quantities).
Consequently, the possibly large estimation errors on β̄ and S̄ (t) will only slightly affect the forecast of H (t).

5.2 Joint Estimation of the Four Estimands
An alternative to Sections 4.2–4.4 is to reconsider (12) as a function of all four estimands:

ϕ̃(β̄, S̄ (ti), γ,H (ti)) = cH
tc∑︁
t=ti

(H (t) −Ho (t))2 + cE
tc∑︁
t=ti

(E(t) − Eo (t))2 + cL
tc∑︁
t=ti

(L(t) − Lo (t))2. (15)
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In (15), H (t), E(t) (see (9)), and L(t) (see (10)) are given by the solution of the discrete-time SH model (13) where the param-
eters β̄ and γ and the initial conditions S̄ (ti) and H (ti) take the values specified in the argument of ϕ̃. Minimizing ϕ̃ is a more
challenging problem than minimizing ϕ (12) in view of the larger number of optimization variables. It may be essential to give
a good initial guess to the optimization solver, and a natural candidate for this is the values obtained by the procedure described
in Sections 4.2–4.4.

In our experiments, we have found that this alternative does not present a clear advantage in terms of the prediction mean
absolute percentage error (MAPE). The results reported in Section 6 are obtained with the prediction approach of Section 4,
unless otherwise specified.

6 Results
We now apply the method of Section 4 (by default) or Section 5.2 (when specified) to the data of Section 2.

The methods are implemented in Python 3 and run with Anaconda 2019.10. The code to reproduce the results is available
from https://sites.uclouvain.be/absil/2020.05.

6.1 Accuracy Measures
We will conduct experiments for more than 100 districts with various train and test periods. Since plotting all the results is out of
the question, we have to return measures that give an account of the accuracy of the predictions. Among the many possibilities,
we will favor the measures defined as follows for an arbitrary period from ta to tb:

• Root mean square error (RMSE):

RMSE =

√︄∑tb
t=ta (Ho (t) −H (t))2

tb − ta + 1
. (16)

The numerator corresponds to the first term of the objective function (12). From an optimization viewpoint, it has the
advantage of being a smooth function.

• Root relative squared error (RRSE):

RRSE =

√√ ∑tb
t=ta (Ho (t) −H (t))2∑tb

t=ta (Ho (t) − mean(Ho))2
(17)

where mean(Ho) = 1
tb−ta+1

∑tb
t=ta Ho (t). This measure can be interpreted as the ratio between the RMSE of H and the

RMSE of mean(Ho).

• Mean absolute error (MAE):

MAE =
1

tb − ta + 1

tb∑︁
t=ta

|Ho (t) −H (t) | . (18)

The MAE is considered to have a better interpretability than the RMSE. However, for comparisons between datasets,
scale-invariant versions, given next, should be favored.

• Mean absolute scaled error (MASE):

MASE =
MAE

1
tb−ta

∑tb−1
t=ta |Ho (t + 1) −Ho (t) |

. (19)

This measure is inspired from Hyndman and Koehler (2006). It consists of the ratio between the MAE and the mean
daily variation of the observed values. An MASE value around 1 or below indicates an excellent accuracy.

• Mean absolute percentage error (MAPE):

MAPE =
1

tb − ta + 1

tb∑︁
t=ta

|Ho (t) −H (t) |
|Ho (t) |

. (20)

While easy to interpret, this measure may be considered to give an undue importance to errors on small values. Moreover,
in the case, encountered in practice, where Ho (t) = 0 for some t, it is undefined.

https://sites.uclouvain.be/absil/2020.05
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Figure 1: Fitting the SH model to the Ho (total hospitalized) curve. In this experiment, the train set is the whole dataset, hence
there is no test (i.e., forecast) curve. Left: Belgium. Right: France.

• Symmetric mean absolute percentage error (sMAPE):

sMAPE =
1

tb − ta + 1

tb∑︁
t=ta

|Ho (t) −H (t) |
( |Ho (t) | + |H (t) |)/2

. (21)

This measure overcomes the undefinedness issue of the MAPE since H (t) is always (strictly) positive in the SH model.

6.2 Fitting Experiment
We first check how well the SH model (13) can fit the available data. For this experiment, we use the method of Section 5.2 with
cE = cL = 0 in order to get the best possible fit (in the least squares sense) to the Ho time series. The results are shown in Figure 1
for Belgium3 and France.4 In this figure, the data is restricted to the first four months, where only one wave is present. Note
that a tight fit over a period containg more than one wave is unachievable since the solutions of model (13) have only one peak.

For Belgium, the RRSE is 9% and the MAPE 14%. For France, the RRSE is 6% and the MAPE 3%. The comparatively large
value of the MAPE for Belgium illustrates the comment made about MAPE in Section 6.1.

The fitting error is remarkably small in view of the fact that there are some 120 data points for only 4 estimands. Recall
indeed that the parameters of the SH model are constant with respect to time in our experiments. This contrasts with Kozyreff
(2021) where there are two phases, and with Nesterov (2020b) where the infection rate is piecewise constant with several pieces.

We stress that Figure 1 in itself does not imply that the model leads to accurate forecasts. If the optimal fit over some period
is bad, then forecasts over that period can only be bad. But if the fit is good (as it is the case here), forecasts can still be bad due
to their sensitivity with respect to the data preceding the to-be-forecasted period. For example, a better fit (in the RMSE sense)
than in Figure 1 (left) can be obtained with a polynomial of degree 8; however, its forecast accuracy is abysmal.

In order to assess the forecast accuracy of the model, we have to learn the estimand variables over a train period that we make
available to the algorithm, then use the learned estimands in order to predict H over a subsequent test period whose data is not
available to the algorithm, and finally compare the prediction with the data on the test period. This is what we proceed to do in
the rest of this Section 6.

6.3 Forecasts from Various Train Periods
Since the solutions of the SH model (13) have only one peak, it is already known that its forecast accuracy will be poor if the
train and test periods overlap with two successive waves. In this section, we investigate if there exist train periods such that the
subsequent few weeks are forecasted with high accuracy by the SH model.

For the Belgian data, Figure 2 shows,5 as a function of tc, the MASE over the 60-day period [tc + 1, tc + 60] obtained with
the two-week train period [tc − 13, tc]. As anticipated, for some train periods, the forecast error is high, with an MASE around
100 or above. For most train periods, the MASE is around 10. However, when the train period is located around the first peak,

3Reproduce with SHR_22PA_py_BELsum_1sttraintstart1_1sttraintend123_1sttesttend123_c111.zip.
4Reproduce with SHR_22PA_py_FRAsum_1sttraintstart1_1sttraintend123_1sttesttend123_c111.zip.
5Reproduce with SHR_22PA_py_BELsum_1sttraintstart1_1sttraintend15_1sttesttend75_c111.zip.
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Figure 2: Forecast accuracy assessment for Belgian data. As a function of t (horizontal axis), the figure shows (Ho (t))t=ts ,...,te
(observed hospitalizations, gray solid line, left-hand vertical axis), and the MASE over the test period [t + 1, t + 60] for the train
period [t − 13, t] obtained respectively with the SH model (13) using the estimation method of Section 4 (green dashed line,
right-hand vertical axis) and with the exponential model presented at the end of Section 6.3 (red dash-dotted line, right-hand
vertical axis).

the MASE goes down to around 1. This means that the forecast error over the 60 days is so low that it is comparable to the daily
variation of the data.

Figure 3 compares6 the observed hospitalization curve with the hospitalizations forecasted by the model for a few train
periods chosen around the first peak. The forecast errors are indeed remarkably small. This finding is compatible with the
considerations in Section 5.1, where we concluded that the estimation of β̄, under a simple noise model, should be most accurate
slightly before the peak of Ho (t).

In Figure 4, we superpose the results7 obtained with various train periods of 14 days for Belgium. The figure further corrob-
orates the comments of Section 5.1. In particular, if the train period is fully located before the peak, then the forecasts are rather
inaccurate. Placing the train period around the peak gives excellent forecast results. When the train period is fully located in the
decrease phase, the estimation of β̄ and S̄ (ti) is seen to be very sensitive, but this does not affect much the quality of the forecast
of H (t).

Figure 5 is the equivalent of Figure 4 for France.8 Again, the experiments are compatible with the comments of Section 5.1.
In experiments not reported here, we also considered some departments separately, with fairly similar results.

A disconcerting aspect is the evolution of the estimated γ as a function of the location of the train period. In Figure 4
(Belgium), the estimation of γ is grouped around 0.08 for several train periods. However, in Figure 5 (France), the estimation
of γ keeps decreasing, indicating that the daily number of patients leaving the hospital is an increasingly small fraction of the
number of patients at the hospital. In view of (11), this casts doubt on the Lo values (see Section 2).

Since, for some train periods, highly accurate two-months-ahead forecasts are obtained with the SH model (13), whose order
is as low as two, we also considered the forecasts obtained by an even simpler model, namely an exponential decay (or growth if
γ < 0) of the form H (t) = H (ti)e−γ (t−ti) . The two parameters H (ti) and γ are estimated in the least-square sense over the train
period. Figure 2 shows that, for most train periods, the forecast errors obtained with the exponential model and the SH model
are fairly similar. However, the SH model produces much more accurate forecasts than the exponential model when the train
period is located around the peak.

6Reproduce with SHR_19PA_py_BELsum_1sttraintstart16_1sttraintend32_1sttesttend123_c111.zip.
7Reproduce with SHR_19PA_py_BELsum_1sttraintstart1_1sttraintend15_1sttesttend123_c111.zip.
8Reproduce with SHR_19PA_py_FRAsum_1sttraintstart1_1sttraintend15_1sttesttend122_c111.zip.
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Figure 3: Belgium, train periods around the first peak. The left-hand plot shows (Ho (t))t=ts ,...,te (observed hospitalizations,
gray solid line), (H (t))t=ti ,...,tc (hospitalizations given by the model over the train period, blue dashed line), and (H (t))t=tc+1,...,te
(hospitalizations forecasted over the test period, in red dash-dot line). In order to give a sense of the sensitivity of the results, we
superpose the curves obtained for three slightly different train periods. The test MASE values for the three curves are 3.16, 0.77,
and 1.15. These values are compatible with the remark in Section 6.1 that MASE values around 1 or lower indicate an excellent
accuracy. The test MAPE values for the three curves are 27%, 7%, and 8%. The right-hand plot shows the evolution of S̄ (t).
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Figure 4: Belgium, various train periods.
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Figure 5: France, various train periods.

6.4 Forecasts from an Automatically Chosen Region Around the Peak
In this section, we investigate if the accurate forecasts obtained when the train period is around the first peak are also observed
in other datasets.

In order to conduct experiments on a large number of datasets, we have to automatize the selection of the train period
around the peak. Moreover, we want the procedure to be free of data leakage, i.e., it has to select the end time tc of the train
period without ever reading the data for t > tc.

The proposed train-period selection procedure goes as follows. We first select a time span N ; in our experiments, we choose
N = 7. In order to robustify the procedure, we smooth out the Ho time series by computing its moving average (MA):

HMA
o (t) = mean(Ho (t −N ), . . . ,Ho (t + N )). (22)

Then we compute t̂ = min{t : arg maxτ≤t H
MA
o (τ) = t −N }; in other words, the highest value of (HMA

o (t))t≤t̂ is at t = t̂ −N ,
which we declare to be the location of the peak. This t̂ is computed by letting t increase until the argmax condition is satisfied.
In view of (22), the data for t > t̂ + N remains unseen, hence we choose tc ≔ t̂ + N as the end time of the train period, thereby
avoiding data leakage. The start of the train period is chosen as ti = t̂ − 2N .

The test accuracies are measured over the 60-day period [tc + 1, min(tc + 60, te)].
The results obtained for each district (province in Belgium and department in France) are summarized in Table 1 (Belgium)9

and Table 2 (France).10 Moreover, for the whole of Belgium,11 we obtain the excellent MASE_test = 0.70, and for the whole of
France,12 we get a considerably poorer MASE_test = 14.07.

The tables reveal that none of the districts admits an MASE_test as low as the 0.70 obtained for the whole of Belgium.
However, Section 6.3 has shown that an MASE_test around 3 is still appreciably low. In view of Table 1, more than half of the
Belgian provinces have an MASE_test below 3.15. Table 2 indicates that an MASE_test below 3 occurs for at least 10% of the
French departments.

9Reproduce with SHR_22PA_py_BELeach_1sttraintstart19_1sttraintend41_1sttesttend101_c111.zip.
10Reproduce with SHR_22PA_py_FRAeach_1sttraintstart50_1sttraintend72_1sttesttend132_c111.zip.
11Reproduce with SHR_22PA_py_BELsum_1sttraintstart17_1sttraintend39_1sttesttend99_c111.zip.
12Reproduce with SHR_22PA_py_FRAsum_1sttraintstart20_1sttraintend42_1sttesttend102_c111.zip.
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Table 1: Statistics of forecast errors over all Belgian provinces for a train period automatically selected around the first peak.
The left column specifies the various accuracy measures, as defined in Section 6.1. The notation Pn stands for the nth percentile.

Percentiles min P10 P25 P50 P75 P90 max
RRSE_train 0.30 0.32 0.33 0.33 0.45 0.55 0.65
RRSE_test 0.13 0.16 0.20 0.32 0.36 0.40 0.99
RRSE_test/RRSE_train 0.24 0.53 0.63 0.79 0.92 1.15 1.52

MASE 0.61 0.79 1.18 1.43 2.47 2.60 8.89
MASE_train 0.65 0.71 0.76 0.88 0.94 1.07 1.28
MASE_test 1.51 1.81 2.23 3.15 3.87 4.73 14.90
MASE_test/MASE_train 1.54 2.21 2.57 3.69 4.78 6.08 16.62

sMAPE_train 0.02 0.02 0.02 0.03 0.03 0.04 0.06
sMAPE_test 0.09 0.11 0.20 0.22 0.47 0.49 0.83
sMAPE_test/sMAPE_train 4.31 5.20 6.44 8.00 14.60 20.01 35.69

Table 2: Same as Table 1, now for the French departments.

Percentiles min P10 P25 P50 P75 P90 max
RRSE_train 0.17 0.35 0.40 0.52 0.67 0.86 1.26
RRSE_test 0.13 0.31 0.45 0.77 1.34 2.12 5.79
RRSE_test/RRSE_train 0.33 0.50 0.77 1.38 2.95 4.43 11.85

MASE 0.37 1.26 2.12 4.16 7.77 11.43 23.46
MASE_train 0.50 0.75 0.87 0.99 1.20 1.39 1.89
MASE_test 1.88 2.95 4.37 8.50 14.08 18.83 90.10
MASE_test/MASE_train 2.05 2.83 4.23 7.66 16.15 21.14 68.08

sMAPE_train 0.01 0.01 0.02 0.04 0.05 0.08 0.36
sMAPE_test 0.06 0.18 0.26 0.45 0.79 1.09 1.80
sMAPE_test/sMAPE_train 1.33 4.17 6.94 12.88 23.25 33.34 56.45

These experiments thus indicate that the SH model (13), trained by the procedure described in Sections 4.2–4.4, can be an
asset for planning health care resources and the easing of lockdown restrictions over the two–three forthcoming months as soon
as the peak has been reached.

6.5 Challenges

The MASE curves in Figure 2 have a rather jagged shape. For the exponential model, this can be attributed to the weekly varia-
tions of the hospitalization curve due to the fact that fewer patients are discharged during the weekend. For the SH model, the
phenomenon is more pronounced because, more than the exponential model, it is able to fit the technical weekly variations in
the data, resulting in poorer forecast accuracies for some train periods. A preliminary filtering aiming at reducing these technical
weekly variations might lead to improved forecasts.

Another cause, specific to the SH model, is that the objective function (12), which has to be minimized to find the estimands
β̄ and S̄ (ti), has a narrow valley,13 as illustrated in Figure 6. This makes it challenging to accurately compute the minimizer. The
situation is worst for periods where the data is accurately fitted by the exponential model, because this means that an accurate
fit is obtained with S̄ (t) almost constant in (13b), which makes it difficult to separately estimate β̄ and S̄ (ti). For some train
periods, the optimization solver scipy.optimize.fmin terminates far away from the global minimum of the objective function,
resulting in a significantly suboptimal fit. Developing optimization methods tailored to the specific landscape of the objective
function (12) is an important topic for further research.

13Reproduce with SHR_22PA_py_BELsum_1sttraintstart17_1sttraintend39_1sttesttend99_c111.zip.
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Figure 6: Belgium, contour plot of the objective function (12) for a train period around the peak. Horizontal axis: β̄; vertical
axis: S̄ (ti). In order to make the minimizer easier to visualize, the plot shows equispaced-level curves of log(ϕ−0.90 ϕ∗), whereϕ∗
is the approximation of the minimal value ofϕprovided by the optimization solver. The red circle shows the initial guess obtained
from Section 5.1 and the red star shows the approximate minimizer returned by the optimization solver. In our experiments, the
optimization solver is scipy.optimize.fmin with its default parameters.

7 Conclusion

We have assessed the accuracy of COVID-19 hospitalization forecasts obtained with the SH model (13), a simple discrete-time
dynamical system with only two state variables and two (time-independent) parameters. The experiments in Section 6 have
shown that the proposed method has a remarkably good fitting accuracy over the whole first wave. It also produces remarkably
accurate forecasts over certain time ranges for some areas (Belgium, some Belgian provinces, and a few French departments).

However, there are also time ranges and areas where the forecasts are very inaccurate. In particular, when it is trained before
the peak, the model produces rather poor forecasts for the position and height of the peak and for the subsequent decrease. The
model is also unable to produce multiple peaks in order to fit or forecast rebounds. The forecasts returned by the model should
thus be taken with much caution.

Another source of caution is that, even though it requires to estimate only four (time-invariant) estimands, fitting the SH
model (13) to the data is already not a trivial task. We have not ruled out the situation where the considered objective function
would be multimodal. The optimization solver might thus get stuck in a local nonglobal minimum, yielding a suboptimal fit
of the train data and possibly poorer forecasts than what the global minimum would achieve. Moreover, even if the objective
function is unimodal, the stopping criterion of the solver may trigger before a suitably accurate approximation of the minimum
is reached, as discussed in Section 6.5.

If the proposed model is used to guide prevention policies, then further caveats are in order. We have seen that the estimation
of β̄ is very sensitive. Hence the proposed model can hardly help assess the impact of prevention measures on β̄. Without knowing
sufficiently accurately the impact of prevention measures on β̄, we may not aptly use the model to predict their impact on the
evolution of the hospitalizations.

Yet another caveat is that it may be tempting to deduce from the excellent fit with a constant-parameter model (Figure 1) that
the evolution of the prevention measures over the dataset period has had no impact on β̄. But the deduction is flawed. Indeed, in
view of the comments made in Section 5.1, the available data could also be very well explained with fairly large jumps in β̄ during
the decrease phase.

In spite of all these caveats, the hospitalization forecasts returned by the method, and also the evolution of S̄ (t), might
be of practical use in the context of various disease outbreaks, e.g., for resource planning. To this end, it will be important



LETTERS IN BIOMATHEMATICS 227

to understand which specific features of the COVID-19 outbreak in Belgium made it possible to forecast so accurately the
hospitalization decrease several months ahead.
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