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ABSTRACT
The aim of this paper is to study the controllability of infections represented by
SIR endemic models with interventions based on vaccination and the impact of
disease-induced reduction in contact-activity on the efforts required to eliminate the
infection. Two kinds of vaccination-interventions are considered. The first is the
routine-immunization, where a proportion p of newborns gets vaccinated immedi-
ately after birth and their immunity wanes overtime, while the other is to vaccinate
those whose immunity acquired by routine-immunization waned and became sus-
ceptible again. The model analysis shows that the earlier the admission of booster
vaccination is, the better the chance to eliminate the infection is. The analysis
shows further that the higher the reduction in the contact activity of infected in-
dividuals is, the lower the booster vaccination rate needed to ensure an effective
control of the infection is and, consequently, the less the minimum effort required
to eliminate the infection is.
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1 Introduction
Due to the significant impact of infectious diseases on population health and economy, there is a big public health interest in
controlling, eliminating, or even eradicating them. Among the various strategies used to control infectious diseases is vaccine
administration (WHO, 2012). Globally, vaccines are routinely given to newborns as a way to implement a herd immunity that
would prevent the occurrence of certain infections outbreak (e.g., diphtheria, tetanus, pertussis, poliomyelitis, measles, mumps,
rubella). If available and totally effective, vaccines are also used to eradicate certain infections (e.g., smallpox) (Henderson, 2014).
However, vaccines are rarely fully protective and the immunity acquired by vaccination does not always last for life, but it some-
times wanes and individuals become susceptible again, especially for inactivated vaccines (e.g., Tetanus and also the case of killed
measles vaccine). Therefore, booster shots are recommended to restore waning immunity (WHO, 2012). As we don’t live in ideal
communities and (sometimes) due to the limited supply of vaccines, not every individual in the population receives vaccines.
Therefore, assessing the minimum vaccination coverage needed to effectively protect the population from infection’s outbreak
is of great concern. To this end, mathematical models are used to imitate and have better understanding of the dynamics and to
gain informative deductions (Brauer and Castillo-Chavez, 2012; Hadeler et al., 2016; Safan et al., 2006).

Mathematical models have been used to study the possible elimination of infectious diseases with strategies based on vaccina-
tion. For example, Anderson and May (1982) used an SEIR model with age-dependent parameters to study the controllability of
directly transmitted infections with vaccination. Castillo-Chavez and Feng (1996) considered an age-structure population model
to study optimal vaccination strategies for tuberculosis, with two vaccination programs aimed at determining the optimal age
or ages at which an individual should be vaccinated. Makinde (2007) considered an age-independent SIR model for a varying
population size with constant vaccination strategy. These papers and many others (e.g., Anderson and May, 1985; Hadeler and
Müller, 2007; Makinde, 2007; Safan, 2020) consider totally perfect vaccines, where they confer life-long immunity. However, as
the vaccine-acquired-immunity declines/wanes to below protection levels (or even disappears) over time, vaccinated individuals
may become susceptible again and get reinfected, but with different susceptibility (Cai et al., 2018; Hadeler and Castillo-Chavez,
1995; Hadeler and van den Driessche, 1997; Liu et al., 2008; Mossong et al., 1999; Safan and Dietz, 2009; Safan and Rihan, 2014;
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Figure 1: Schematic diagram for the transition between states of the model with waning vaccine-induced immunity and booster
vaccination.

Safan et al., 2013; Safan, 2019). Therefore, booster vaccination strategies are used to help contain the infection (Glass and Gren-
fell, 2003).

Individual’s immunity is boosted either due to exposure to natural infections (Barbarossa and Röst, 2015; Lavine et al.,
2011; Leung et al., 2018) or due to booster vaccination dosage(s). This work focuses on boosting individual’s immunity by
vaccination, where an SIR endemic model for a demographically stationary population is considered. It is assumed in this work
that the immunity acquired by childhood vaccination (i.e., vaccination given at birth for a proportion p of newborns) wanes
over time, while the immunity acquired after recovery from the infection is permanent (e.g., the case of measles) (Christenson
and Böttiger, 1994). Moreover, individuals whose childhood-vaccine-acquired immunity declined and became susceptible again
will be vaccinated at some rate (say, ψ) and that booster vaccination confers immunity for their rest of life. It is aimed here to
study the possibility to eliminate the infection with vaccination solely and find the critical booster vaccination rate above which
the infection washes out. We further extend the model to study the impact of including reduction in contact activity on the
models dynamics and on reducing the minimum effort needed in the infection elimination process.

The manuscript is organized as follows. Section 2 includes the model formulation and its equilibrium and stability analy-
ses. Extended model to include disease-induced reduction in contact activity is shown in Section 3. The possibility to control
the infection with strategies based solely on vaccination has been discussed in Section 4. A summary of the main results and
conclusion is given in Section 5.

2 Model Formulation

Consider a demographically stationary population, in the sense that its size remains fixed with respect to time t. This population
is stratified into five mutually exclusive independent categories according to the individuals epidemiological status, namely, naive
susceptible, vaccinated, vaccinated susceptible, infected and recovered. It is assumed that newborns are all (naive) susceptible
and the birth rate as well as the natural death rate for all classes is µ. Moreover, a proportion p of the newborns is assumed to get
vaccinated immediately after birth. This childhood vaccine induces temporary immunity.

In its duration, the immunity acquired by vaccination varies from vaccine/disease to another. Not always do vaccines in-
duce lifelong immunity, but it may last for a specific period of time after which it wanes. In this work, we assume that the
immunity acquired by childhood vaccination wanes, with a duration of immunity 1/σ time units, while the natural immunity
(i.e., immunity acquired by recovery after experiencing the infection) is assumed to last for life. Consequently, we differentiate
between vaccinated (denoted by V ) and recovered individuals (denoted by R). We assume that individuals whose immunity
wanes become susceptible again, denoted by Sv. Therefore, we differentiate between naive susceptible individuals S (i.e., indi-
viduals who have neither acquired the infection nor received vaccine) and vaccinated-susceptible individuals Sv (i.e., those who
lost their childhood vaccine-induced immunity and became susceptible again), where it is assumed that the relative susceptibility
of Sv-individuals with respect to S-individuals is g ∈ [0, 1]. It is assumed further that naive susceptible individuals acquire the
infection due to successful contacts with infected ones (denoted by I) at rate λ(t), while Sv individuals acquire the infection at
rate gλ(t). Moreover, Sv individuals may boost their immunity by getting vaccinated at rate ψ and acquire immunity for the
rest of their life, while infected individuals recover naturally from the infection at rate γ. The transition diagram between model
states is shown in figure 1.

It is worth noting that the state variables S,V , Sv, I andR represent proportions of subpopulations so that S+V+Sv+I+R =
1. In the standard incidence setting and for a homogeneously mixing population, the force of infection λ(t) = βI (t), where β is
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the successful contact rate between naive susceptible and infected individuals. Therefore, the model reads

dS

dt
= (1 − p)µ − β SI − µS,

dV

dt
= pµ − (σ + µ)V ,

dSv
dt

= σV − g β SvI − (ψ + µ)Sv,

dI

dt
= β SI + g β SvI − (γ + µ)I ,

dR

dt
= γI + ψSv − µR,

(1)

with initial conditions S (0),V (0), Sv (0), I (0),R(0) and S (t) +V (t) + Sv (t) + I (t) +R(t) = 1. Model (1) is defined on the set

Ω =
{
(S,V , Sv, I ,R) ∈ R5

+ : 0 ≤ S,V , Sv, I ,R ≤ 1, S (t) + V (t) + Sv (t) + I (t) + R(t) = 1
}

. (2)

The following proposition results on the basic properties of model (1). Its proof is deferred to Appendix A.

Proposition 1. The set Ω is positively invariant and attracts all solutions inR5
+. Moreover, for any nonnegative initial conditions(

S (0),V (0), Sv (0), I (0),R(0)
)
∈ Ω, the solution set

(
S (t),V (t), Sv (t), I (t),R(t)

)
of the system (1) remains positive for all t > 0.

Also, Model (1) has a unique solution.

2.1 Equilibrium and stability analyses
2.1.1 Infection-free equilibrium and its local stability

The equilibrium analysis of model (1) shows that it has an infection-free equilibrium E0 = (S0,V0, Sv0, I0,R0) ′, where the
prime (′) means vector transpose, whose components are given by

S0 = 1 − p, V0 =
pµ

σ + µ
, Sv0 =

pµσ

(µ + ψ) (σ + µ) , I0 = 0, R0 =
pψσ

(µ + ψ) (σ + µ) . (3)

Moreover, the Jacobian matrix of the right hand side of model (1), evaluated at the infection-free equilibrium E0, reads

JE0 =

©«
−µ 0 0 −(1 − p)β 0
0 −(σ + µ) 0 0 0
0 σ −(µ + ψ) −gβSv0 0
0 0 0 (1 − p)β + gβSv0 − (γ + µ) 0
0 0 ψ γ −µ

ª®®®®®¬
. (4)

It is clear that JE0 has the four negative eigenvalues −µ,−µ,−(σ + µ),−(ψ + µ) in addition to the fifth eigenvalue

β
(
1 − p + gp

σ

σ + µ
×

µ

µ + ψ

)
− (γ + µ)

which is negative if and only if the vaccine-control reproduction number Rψ < 1, where

Rψ =
β

γ + µ

(
1 − p + gp

σ

σ + µ
×

µ

µ + ψ

)
. (5)

In summary, we show the following proposition.

Proposition 2. Model (1) has an infection-free equilibriumE0 = (S0,V0, Sv0, I0,R0) ′ whose components are defined in (3). This
equilibrium is locally asymptotically stable if and only if the vaccine-control reproduction number Rψ < 1.

2.1.2 Endemic equilibrium and its local stability analysis

In model (1), the S-, V -, and Sv-equations at equilibrium imply, respectively, that

S̄ =
(1 − p)µ
µ + βĪ

, V̄ =
pµ

σ + µ
, S̄v =

σV̄

ψ + µ + gβĪ
. (6)
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However, the I -equation at equilibrium implies, for Ī ≠ 0, that

γ + µ

β
= S̄ + gS̄v. (7)

Now, we use (6) in (7) to get the characteristic epidemiological equation

(1 − p)µ
µ + βĪ

=
γ + µ

β
−

gpσµ

(σ + µ) (ψ + µ + gβĪ)
. (8)

The left hand side of equation (8) is monotonically decreasing in the endemic prevalence of infection Ī , while its right hand side
is monotonically increasing in Ī . Therefore, equation (8) has a unique solution if and only if

1 − p >
γ + µ

β
−

gpσµ

(σ + µ) (ψ + µ)

which is equivalent to having Rψ > 1. Once we obtain a solution Ī of (8), we substitute in (6) to get the proportions S̄, S̄v and
R̄ in the endemic situation. Now, to find the endemic prevalence of infection, we rewrite (8) in the form

A1 (β Ī)2 + B1 (β Ī) + C1 = 0 (9)

where
A1 = g(γ + µ) (σ + µ),

B1 = (γ + µ) (σ + µ) (ψ + µ + gµ) − gµβ
(
pσ + (1 − p) (σ + µ)

)
,

C1 = µ(γ + µ) (σ + µ) (ψ + µ) − µβ
(
gpσµ + (1 − p) (ψ + µ) (σ + µ)

)
.

(10)

Therefore,

Ī =
−B1 +

√︃
B2

1 − 4A1C1

2βA1

where the discriminant B2
1 − 4A1C1 (see Appendix B for detailed derivation) is given by

B2
1 − 4A1C1 =

(
(γ + µ) (σ + µ) (ψ + (1 − g)µ) + gµβ((1 − p) (σ + µ) − pσ)

)2
+ 4p(1 − p)g2µ2β2σ (σ + µ). (11)

Therefore, we state the following proposition.

Proposition 3. Model (1) has a unique endemic equilibrium Ee =
(
S̄, V̄ , S̄v, Ī , R̄

) ′
if and only if Rψ > 1.

To establish the local stability of the endemic equilibrium Ee, we compute the Jacobian matrix Je of the system (1) at Ee. The
computations show that Je has the two negative eigenvalues −µ and −(σ + µ) in addition to the eigenvalues of the sub-matrix

Jsub = ©«
−(µ + βĪ) 0 −βS̄

0 −(µ + ψ + gβĪ) −gβS̄v
βĪ gβĪ 0

ª®¬ . (12)

The matrix Jsub has the characteristic polynomial

P (ρ) = ρ3 + a2ρ
2 + a1ρ + a0 (13)

where ρ denotes the eigenvalue and

a2 = (µ + βĪ) + (µ + ψ + gβĪ) > 0,
a1 = (gβĪ) (gβS̄v) + (µ + βĪ) (µ + ψ + gβĪ) + (βĪ) (βS̄) > 0,
a0 = (gβĪ) (gβS̄v) (µ + βĪ) + (βĪ) (βS̄) (µ + ψ + gβĪ) > 0.

It is clear that the characteristic polynomial (13) is cubic with positive coefficients. Therefore, the Routh-Hurwitz criterion (see
Theorem 1.4 of Hadeler, 2017) implies that P (ρ) = 0 has negative roots if and only if the Hurwitz determinants, given explicitly
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by Δ1 = a2, Δ2 = a2a1 − a0 and Δ3 = a0Δ2, are all positive. Since the coefficients a0, a1 and a2 are all positive, then the Hurwitz
determinants are positive if and only if Δ2 > 0. To this end, we compute

Δ2 =
(
(µ + βĪ) + (µ + ψ + gβĪ)

) (
(gβĪ) (gβS̄v) + (µ + βĪ) (µ + ψ + gβĪ) + (βĪ) (βS̄)

)
− (gβĪ) (gβS̄v) (µ + βĪ) − (βĪ) (βS̄) (µ + ψ + gβĪ)

= (µ + βĪ) (µ + ψ + gβĪ)
(
(µ + βĪ) + (µ + ψ + gβĪ)

)
+ (βĪ) (βS̄) (µ + βĪ)

+ (gβĪ) (gβS̄v) (µ + ψ + gβĪ)
> 0.

Hence, the endemic equilibrium Ee is locally asymptotically stable whenever exists. Thus, we show the following proposition.

Proposition 4. The unique endemic equilibrium Ee =
(
S̄, V̄ , S̄v, Ī , R̄

) ′
is locally asymptotically stable whenever exists.

3 Effect of Disease-Induced Reduction in Contact Activity
Assume now that infected individuals reduce their contact activity with a proportion Pr ∈ [0, 1], see Feng and Thieme (1983);
Safan (2020). Then the number of individuals available to mingle together at time t isN (t) −PrI (t)N (t). Also, the probability
that a non-infected individual has a contact with an infected one is (1−Pr)I

/
(1−PrI (t)). Therefore, the rate at which susceptible

individuals S acquire the infection is

λS =
(1 − Pr)βI
1 − PrI (t)

(14)

while that of susceptible vaccinated individuals is gλS . Therefore, model (1) modifies to

dS

dt
= (1 − p)µ −

(1 − Pr) β SI
1 − Pr I

− µS,

dV

dt
= pµ − (σ + µ)V ,

dSv
dt

= σV −
g(1 − Pr) β SvI

1 − Pr I
− ψSv − µSv,

dI

dt
=

(1 − Pr) β SI
1 − Pr I

+
g(1 − Pr) β SvI

1 − Pr I
− (γ + µ)I ,

dR

dt
= γI + ψSv − µR,

(15)

with initial conditions S (0), V (0), Sv (0), I (0), R(0) and S + V + Sv + I + R = 1. The model is still defined on the positively
invariant set Ω:

Ω =
{
(S,V , Sv, I ,R) ∈ R5

+ : 0 ≤ S,V , Sv, I ,R ≤ 1, S (t) + V (t) + Sv (t) + I (t) + R(t) = 1
}

. (16)

Since PrI < 1, then the right hand side of (15) is continuous and differentiable in the state variables, hence, it is locally Lipschitz.
Thus, model (15) has a unique time-dependent solution.

The equilibrium analysis of model (15) shows that it has the infection-free equilibrium

E0,Pr =
(
1 − p,

pµ

σ + µ
,
pσ

σ + µ
×

µ

ψ + µ
, 0,

pσ

σ + µ
×

ψ

ψ + µ

) ′
(17)

which exists under no constraint. Linearizing model (15) about the infection-free equilibrium E0,Pr and computing the eigen-
values of the Jacobian matrix J at E0,Pr reveal that J has the four negative eigenvalues −µ, −µ, −(σ + µ), −(ψ + µ) in addition to
the fifth eigenvalue

(1 − Pr)β
(
1 − p + g

pσ

σ + µ
×

µ

ψ + µ

)
− (γ + µ)

which is negative if and only if the control reproduction number in the presence of self-contactivity-reduction satisfiesRPr < 1,
where

RPr = (1 − Pr) ×
β

γ + µ
×

(
1 − p + gp

σ

σ + µ
×

µ

ψ + µ

)
= (1 − Pr)Rψ . (18)

Hence, we show the following proposition.
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Proposition 5. Model (15) has an infection-free equilibrium E0,Pr , given by (17). It is locally asymptotically stable if and only if
the control reproduction number in the presence of self-contactivity-reduction RPr is less than one.

The equilibrium analysis shows further that model (15) has a unique endemic equilibrium, whose existence is constrained
by the satisfaction of the inequality RPr > 1. This is proven by assuming that at equilibrium I ≠ 0. Hence, the equilibrium
force of infection λ̄S ≠ 0. Now, we put the derivatives in the left hand side of (15) equal zero and solve with respect to the state
variables at equilibrium to get

S̃ =
(1 − p)µ
λ̄S + µ

, Ṽ =
pµ

σ + µ
, S̃V =

pµ

σ + µ
× σ

gλ̄S + ψ + µ
, R̃ = 1 − (S̃ + Ṽ + S̃v + Ĩ) (19)

and

Ĩ =
λ̄S
γ + µ

(
(1 − p)µ
λ̄S + µ

+
pµ

σ + µ
×

gσ

gλ̄S + ψ + µ

)
(20)

where

λ̄S =
(1 − Pr)β̃I

1 − Pr Ĩ
. (21)

Now, we substitute from (20) into (21) to get (for λ̄S ≠ 0)

1 −
Prµ

γ + µ

(
(1 − p)λ̄S
λ̄S + µ

+
pσ

σ + µ
×

gλ̄S

gλ̄S + ψ + µ

)
=

(1 − Pr)µ β
γ + µ

(
1 − p

λ̄S + µ
+

pσ

σ + µ
×

g

gλ̄S + ψ + µ

)
. (22)

Once a solution λ̄S ∈ [0,∞) for equation (22) is obtained, we substitute in (19) and (20) to get the equilibrium components. It
is clear that both sides of (22) are monotonically decreasing in λ̄S , given that all model parameters are kept fixed. However, the
left hand side of (22) tends to

1 −
Prµ

γ + µ

(
1 − p +

pσ

σ + µ

)
when λ̄S tends to ∞, while its right hand side approaches zero as λ̄S approaches ∞. Hence, a unique solution for (22) exists if
and only if the value of the left hand side of (22) at λ̄S = 0 is less than the value of its right hand side at λ̄S = 0, while otherwise
equation (22) has no feasible solution. Thus, model (15) has a unique endemic equilibrium if and only if

1 <
(1 − Pr) β
γ + µ

(
1 − p +

pσ

σ + µ
×

gµ

ψ + µ

)
.

which is equivalent to having RPr > 1. In summary, we show the following proposition.

Proposition 6. Model (15) has a unique endemic equilibrium whose components are given by (19) and (20). It does exist if and
only if the control reproduction number in the presence of contact-activity-reduction RPr is bigger than one.

In order to investigate the possible existence of endemic equilibria for RPr < 1, we rewrite equation (22) in the polynomial
form

G(β, λ̄S) ≔ A2λ̄
2
S + B2λ̄S + C2 = 0 (23)

with

A2 = g
(
(γ + µ) (σ + µ) − Prµ(pσ + (1 − p) (σ + µ))

)
,

B2 = (γ + µ) (σ + µ) (ψ + µ + gµ) − Prµ
(
gpσµ + (1 − p) (σ + µ) (ψ + µ)

)
− g(1 − Pr)µβ(pσ + (1 − p) (σ + µ)),

C2 = µ(γ + µ) (σ + µ) (ψ + µ) − (1 − Pr)µβ
(
gpσµ + (1 − p) (σ + µ) (ψ + µ)

)
.

Equation (23) could be seen as a bifurcation equation in β and λ̄S . It has a bifurcation point P0 = (βcPr , 0) in the plane (β, λ̄S),
where

βcPr =
(γ + µ) (σ + µ) (ψ + µ)

(1 − Pr)
(
(1 − p) (σ + µ) (ψ + µ) + gpσµ

) . (24)
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Assuming that all model parameters, except β, are fixed, then

dλ̄S
dβ

= −
𝜕G/𝜕β
𝜕G/𝜕λ̄S

. (25)

At the point P0 = (βcPr , 0), we have (see Appendix C for a complete derivation)

𝜕G

𝜕β

�����
(βcPr ,0)

= −(1 − Pr)µ
(
gpσµ + (1 − p) (σ + µ) (ψ + µ)

)
< 0,

𝜕G

𝜕λ̄S

�����
(βcPr ,0)

≥
pσ (gµ)2 ((γ + µ) (σ + µ) − pσµ)
gpσµ + (1 − p) (σ + µ) (ψ + µ)

+
gp(1 − p)σµ2 (σ + µ) (ψ + µ)
gpσµ + (1 − p) (σ + µ) (ψ + µ)

(( γ

gpµ
×
σ + µ

σ
×
ψ + µ

µ
− 1

)
+

( σ + µ

gσ
×
ψ + µ

µ
− 1

))
> 0. (26)

Hence,
dλ̄S
dβ

�����
(βcPr ,0)

> 0.

Therefore, the bifurcation direction is forward (i.e., supercritical) at (βcPr , 0). Thus, model (15) doesn’t have endemic equilibria
for RPr < 1, but has a unique endemic equilibrium for RPr > 1. This unique endemic equilibrium corresponds to the unique
feasible solution of (23), which is given by

λ̄S =
−B2 +

√︃
B2

2 − 4A2C2

2A2
. (27)

The following proposition summarizes the above results.

Proposition 7. In the plane (β, λ̄S) there is a bifurcation point P0 = (βcPr , 0), at which the bifurcation is forward (supercritical).
The model doesn’t exhibit backward bifurcation and no endemic equilibrium exists for RPr < 1.

4 Controllability of the Infection
In the absence of any type of vaccination (i.e., p = 0 and ψ = 0), model (1) reduces to the standard SIR model and the infection
dies out if the basic reproduction number R0 = β/(γ + µ) is reduced to slightly below one, a condition which is equivalent
to reducing the successful contact rate β to slightly below a critical level, say, β0 = γ + µ. However, if herd immunity only
(i.e., vaccinating a proportion p > 0 of newborns) is applied, where the vaccine is assumed imperfect, then model (1) reduces
to the case where booster vaccination is neglected (i.e., ψ = 0). In this case, the infection washes out if and only if the control
reproduction number

Rp =
β

γ + µ

(
1 − p + gp

σ

σ + µ

)
(28)

is reduced to slightly below one, which is equivalent to reducing the contact rate to slightly below the critical level

βcp =
(γ + µ) (σ + µ)

(1 − p) (σ + µ) + gpσ
. (29)

It is clear that βcp tends to βrp =: (γ + µ) (σ + µ)/(gσ) as p tends to one, which means that if the contact rate β is higher than
the reinfection contact rate βrp, then the infection can not be eliminated from the population by vaccination solely, even if every
newborn is vaccinated, immediately after birth, with an imperfect vaccine.

4.1 Effect of booster mass vaccination (ψ ≥ 0)
If a booster vaccination dose is applied, as considered in model (1), then the control reproduction number isRψ and the infection
washes out if and only if Rψ < 1. In this case, the critical contact rate below which the infection disappears and doesn’t persist
in the population is

βcψ =
(γ + µ) (σ + µ) (ψ + µ)

(1 − p) (σ + µ) (ψ + µ) + gpσµ
≥ βcp. (30)
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Figure 2: The critical contact rate βcψ as a function of the vaccination coverage p for different levels of booster vaccination
rate ψ , while keeping other model parameters fixed. Simulations have been produced with parameter values µ = 0.013 year−1,
γ = 25 year−1, σ = 0.1 year−1, g = 0.8. Part (a) has been produced with ψ = 0 year−1, while part (b) is produced with
ψ = 0.1 year−1 (dashed curve) and ψ = 0.3 year−1 (solid curve). Horizontal dotted lines represent the reinfection contact rate.
Here IFE and UEE stand for infection-free equilibrium and unique endemic equilibrium, respectively.

When p approaches one, then the critical contact rate βcψ approaches a reinfection contact rate threshold βrψ , where

βrψ =
(γ + µ) (σ + µ)

gσ
×
ψ + µ

µ
≥ βrp. (31)

Formula (30) says that applying a booster vaccination program on susceptible vaccinated individuals increases the critical contact
rate below which the infection dies out and, therefore, extends the region of attraction of the infection-free equilibrium (see
figure 2), which in turn increases the possibility to eliminate the infection. However, formula (31) says that the reinfection
contact rate threshold increases in the presence of mass vaccination and consequently increases the possibility to eliminate the
infection with vaccination solely. In fact, βrψ → ∞ as ψ → ∞.

The condition Rψ < 1 could be implemented if and only if

µ

ψ + µ
<
σ + µ

gpσ

( γ + µ

β
− (1 − p)

)
(32)

or equivalently if

ψ > µ

(
σ

σ + µ
×

gp
γ + µ

β
− (1 − p)

− 1

)
≔ ψ c0 (33)

which is well defined if and only if
1

1 − p
<

β

γ + µ
<

1

1 − p +
gpσ

σ + µ

.

Formula (33) defines the critical booster vaccination rate above which the infection is possibly eliminated.

4.2 Effect of reduction in contact-availability 0 ≤ Pr ≤ 1
If infected individuals reduce their availability to mingle in the population (either voluntary or due to governmental constraints,
like in case of covid-19) with proportion Pr , then the control reproduction number for the modified model (15) is RPr , and the
infection dies out from the population if control measures have been applied to reduceRPr to slightly below one or equivalently
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Figure 3: The critical contact rate βcPr as a function of the vaccination coverage p for different levels of contact activity re-
duction proportion Pr , while keeping other model parameters fixed. Simulations have been produced with parameter values
µ = 0.013 year−1, γ = 25 year−1, σ = 0.1 year−1, ψ = 0.1 year−1, g = 0.8 and (Pr = 0.0 for the dashed curve, Pr = 0.5 for the
solid curve). The dotted horizontal lines show the reinfection contact rate corresponding to the various values of Pr . Below the
curve, only the infection-free equilibrium (IFE) is the attractor, while above it a unique endemic equilibrium (UEE) does exist.

to reduce the effective contact rate β to slightly below a critical level βcPr , where

βcPr =
(γ + µ) (σ + µ) (ψ + µ)

(1 − Pr)
(
(1 − p) (σ + µ) (ψ + µ) + gpσµ

) =
βcψ

1 − Pr
> βcψ . (34)

It is clear that the critical contact rate βcPr increases with the increase of the reduction proportion Pr , see figure 3. Moreover,
formula (34) says that a 50% reduction in the contact activity level of infected individuals enlarges the critical contact rate βcψ by
two folds, which in turn duplicates the region of attraction of the infection-free equilibrium and the possibility to eliminate the
infection, see figure 3. Also, the reinfection contact rate reads

βrPr =
(γ + µ) (σ + µ) (ψ + µ)

(1 − Pr)gσµ
(35)

which tends to ∞ as Pr → 1. If we solve the inequality RPr < 1 in terms of the booster vaccination rate ψ , we get

ψ > µ

(
σ

σ + µ
×

gp
γ + µ

(1 − Pr)β
− (1 − p)

− 1

)
≔ ψ cPr (36)

which is well defined if and only if
1

1 − p
<

(1 − Pr)β
γ + µ

<
1

1 − p +
gpσ

σ + µ

.

Formula (36) defines the critical booster vaccination rate (ψ cPr ) above which the infection is possibly eliminated in the presence
of contact-activity reduction (i.e., 0 < Pr ≤ 1). The formula says that the higher the reduction in contact activityPr is, the lower
the critical booster vaccination rate ψ cPr is, which induces a reduction in the effort needed to eliminate the infection.

5 Summary and Conclusion
Vaccination is a safe and highly effective method used to prevent the spread of various infectious diseases. For example, most
children are globally protected from many infectious diseases through routine immunization programs. However, the immunity
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acquired by vaccination could last for a limited period of time after which it wanes. Consequently, waned-immunity individuals
become subject to acquire the infection. Therefore, booster vaccination could be applied to raise their immunity, which in turn
prevents them from acquiring the infection. In this work, the extent to which these infections are eliminated from the population
with strategies based solely on vaccination has been studied. To this end, a mathematical deterministic SIR endemic model
has been introduced and analyzed. The model takes into account routine immunization for a proportion p of the newborns.
Vaccinated newborns are assumed to lose their vaccine-induced immunity and become susceptible-vaccinated after a period of
1/σ unit time. Therefore, the model differentiates between two types of susceptible individuals, namely, naive susceptible and
susceptible-vaccinated, who were vaccinated and lost their acquired immunity. Susceptible-vaccinated individuals either acquire
the infection, die naturally or get vaccinated again (booster vaccination) at rate ψ .

The analysis showed that the model has an infection-free equilibrium that is locally asymptotically stable if and only if a
control reproduction number, denoted by Rψ , is less than one. In addition, it has a unique endemic equilibrium that is shown
to exist and be stable if and only if Rψ > 1. The analysis shows further that the critical contact rate separating between non-
persistence and persistence of the infection is βcψ , given by (30), that increases with the increase of the booster vaccination rate
ψ , which in turn increases the possibility (and decreases the effort required) to eliminate the infection. However, it has a finite
(in p) reinfection contact rate βrψ , given by (31). This reinfection level increases with the increase of the booster vaccination rate
ψ , which means that the earlier the admission of booster vaccination is, the better the chance to eliminate the infection is.

The model has been extended to include disease-induced reduction in contact-activity of infected individuals at a proportion
Pr and study its impact on the overall dynamics and the controllability of the infection. The analysis shows that the critical
contact rate below which the infection dies out βcPr , given in (34), increases with the increase of Pr and therefore enhances the
possibility to eliminate the infection. Moreover, the higher the reduction in the contact activity of infected individuals is, the
lower the booster vaccination rate ψ needed to ensure an effective control of the infection is and, consequently, the less the
minimum effort required to eliminate the infection is.

Our model could possibly be applied to the case of measles if disease-induced mortality has been taken into account. It can
further be extended to consider the loss of infection-induced immunity which models pertussis dynamics.

Appendix A Properties of Model (1) – Proof of Proposition 1

The S-equation implies that dS/dt ≥ −(µ + βI)S. Hence, we obtain

S (t) ≥ S (0) exp
(
−

∫ t

0
(βI (u) + µ)du

)
≥ 0 ∀ S (0) ≥ 0.

Similarly, it is possible to obtain

V (t) ≥ V (0) exp
(
−(σ + µ)t

)
≥ 0 ∀ S (0) ≥ 0,

Sv (t) ≥ Sv (0) exp
(
−

∫ t

0
(gβI (u) + µ + ψ)du

)
≥ 0 ∀ Sv (0) ≥ 0,

I (t) ≥ exp
(
−(γ + µ)t

)
≥ 0 ∀ I (0) ≥ 0,

R(t) ≥ R(0) exp
(
−µt

)
≥ 0 ∀ R(0) ≥ 0.

Therefore, for any non-negative initial values S (0), V (0), Sv (0), I (0), R(0), all solutions S (t), V (t), Sv (t), I (t), R(t) remain
non-negative. Moreover, since S (t) + V (t) + Sv (t) + I (t) + R(t) = 1, then the solutions are bounded from above. Thus, given(
S (0),V (0), Sv (0), I (0),R(0)

)
∈ Ω, the solution set

(
S (t),V (t), Sv (t), I (t),R(t)

)
remains in Ω for all t > 0. Consequently,

Ω is positively invariant.
On the other hand, as the right hand side of the system (1) is continuous and differentiable in the state variables S,V , Sv, I ,R,

then it is locally Lipschitz and therefore the system has a unique time-dependent solution on a maximum forward interval of
existence.
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Appendix B Derivation of Formula (11)
From (10) we get

B2
1 − 4A1C1 =

(
gµβ(pσ + (1 − p) (σ + µ))

)2 + (γ + µ)2 (σ + µ)2 (ψ + µ + gµ)2

− 2gµβ(γ + µ) (σ + µ) (ψ + µ + gµ) (pσ + (1 − p) (σ + µ))
+ 4gµβ(γ + µ) (σ + µ) (gpσµ + (1 − p) (σ + µ) (ψ + µ)) − 4gµ(γ + µ)2 (σ + µ)2 (ψ + µ)

=
(
gµβ(pσ + (1 − p) (σ + µ))

)2 + (γ + µ)2 (σ + µ)2 (ψ + µ − gµ)2

+ 2gµβ(γ + µ) (σ + µ)
(
gpσµ + (1 − p) (σ + µ) (ψ + µ) − pσ (ψ + µ) − (1 − p)gµ(σ + µ)

)
=

(
gµβ(pσ + (1 − p) (σ + µ))

)2 + (γ + µ)2 (σ + µ)2 (ψ + µ − gµ)2

+ 2gµβ(γ + µ) (σ + µ) (ψ + µ − gµ) ((1 − p) (σ + µ) − pσ)

=
(
(γ + µ) (σ + µ) (ψ + µ − gµ) + gµβ((1 − p) (σ + µ) − pσ)

)2

+ 4p2g2σ2µ2β2 + 4pg2σµ2β2 ((1 − p) (σ + µ) − pσ)

=
(
(γ + µ) (σ + µ) (ψ + µ − gµ) + gµβ((1 − p) (σ + µ) − pσ)

)2
+ 4p(1 − p)g2µ2β2σ (σ + µ).

Appendix C Derivation of Formula (26)

𝜕G

𝜕λ̄S

�����
(βcPr ,0)

= B2
��
β=βcPr

= (γ + µ) (σ + µ) (ψ + µ + gµ) − Prµ
(
gpσµ + (1 − p) (σ + µ) (ψ + µ)

)
− g(1 − Pr)µ

(
pσ + (1 − p) (σ + µ)

)
βcPr (37)

Now, we use (24) in (37) to get

(gpσµ + (1 − p) (σ + µ) (ψ + µ)) 𝜕G
𝜕λ̄S

���
(βcPr ,0)

= (γ + µ) (σ + µ) (ψ + µ + gµ)
(
gpσµ + (1 − p) (σ + µ) (ψ + µ)

)
− Prµ(gpσµ + (1 − p) (σ + µ) (ψ + µ))2

− gµ(γ + µ) (σ + µ) (ψ + µ) (pσ + (1 − p) (σ + µ))

= (γ + µ) (σ + µ)
(
pσ (gµ)2 + (1 − p) (σ + µ) (ψ + µ)2

)
− Prµ

(
gpσµ + (1 − p) (σ + µ) (ψ + µ)

)2

≥ (γ + µ) (σ + µ)
(
pσ (gµ)2 + (1 − p) (σ + µ) (ψ + µ)2

)
− µ

(
gpσµ + (1 − p) (σ + µ) (ψ + µ)

)2

= (γ + µ) (σ + µ) (pσ) (gµ)2 + (1 − p) (γ + µ) (σ + µ)2 (ψ + µ)2

− µ
(
(gµ)2 (pσ)2 + 2gp(1 − p)σµ(σ + µ) (ψ + µ) + (1 − p)2 (σ + µ)2 (ψ + µ)2

)
= (pσ) (gµ)2

(
(γ + µ) (σ + µ) − pσµ

)
+ (1 − p) (σ + µ) (ψ + µ)

×
( (
γ(σ + µ) (ψ + µ) − gpσµ2) + pµ

(
(σ + µ) (ψ + µ) − gσµ

) )
= (pσ) (gµ)2

(
(γ + µ) (σ + µ) − pσµ

)
+ gp(1 − p)σµ2 (σ + µ) (ψ + µ)

×
((

γ

gpµ
×
σ + µ

σ
×
ψ + µ

µ
− 1

)
+

(
σ + µ

gσ
×
ψ + µ

µ
− 1

))
> 0.
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