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Emerging infectious diseases have impacted human race regularly with the past Received May 7, 2020
few decades alone has been rife with outbreaks such as H7N9 Avian-influenza Accepted January 27, 2021

(2013), Ebola (2014), MERS-CoV (2012), SARS-CoV1 (2003), and Zika (2015).
COVID-19 coronavirus variants are emerging across the globe causing ongoing pan-
demic. Older age, male sex, number of comorbidities, and access to timely health
care are identified as some of the risk factors associated with COVID-19 mor-
tality. The regression approaches for capturing the competing risks are applied
to COVID-19 in this work. The most commonly used approaches are the cause-
specific and sub-distribution hazards regression which are applied on the COVID-19
incidence-data from USA. Additionally, the pseudo-observation approach, which al-
lows for analysis of survival data, is applied on the same data. The simulations are
carried out to compare approaches under different scenarios and also illustrate the
relative effect of COVID-19 infected people based on their gender and age.
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1 Introduction

Severe Acute Respiratory Syndrome (SARS), a viral respiratory disease, is the first major novel emerging infectious disease that
originated in southern China in November 2002 and hit the international community in the 21st century. It reached Hong
Kong in February 2003 and spread rapidly thereafter to 29 countries/regions on five continents, infecting the global cumula-
tive total of 8098 infected persons with 774 deaths during the outbreak (Lam et al., 2003). No cases of SARS (now referred as
CoV-1) have been reported worldwide since 2004. The related virus SARS coronavirus (named as SARS-CoV-2) is the cause of
the ongoing 2019 coronavirus pandemic. On 31 December 2019, the outbreak has been traced to a novel strain of coronavirus
(known as COVID-19), giving the interim name 2019-nCoV by WHO but later it is renamed as SARS-CoV-2 by the Inter-
national Committee on Taxonomy of Viruses. Some researchers have suggested that the Huanan Seafood Wholesale Market,
Wuhan may not be the original source of viral transmission to humans (Park, 2020). The virus primarily spreads among people
via exhaled respiratory droplets such as coughing or sneezing. The World Health Organization has declared the situation a pan-
demic with some serious travel restrictions. Epidemiology of SARS-CoV-2 has been found to be different than of SARS-CoV-1.
In COVID-19 patients, the time between exposure and symptom onset is estimated to be around five days, but may range from
two to fourteen days. Among those who died from the disease, the time from development of symptoms to death is between
6 to 41 days, with a median of 14 days. Most of the people who died were elderly: (i) about 80% of deaths were in those over
60 and (ii) 75% had pre-existing health conditions including cardiovascular diseases and diabetes. By the end of 2019, a novel
coronavirus that was originated from Wuhan, a city in China, has caused more than 90 million cases and 2 million deaths world-
wide. Coupled with the economic costs resulting from restriction of movement of individuals, the pandemic has highlighted
the necessity for a rapid coordinated international response to disease control. Coronaviruses vary significantly in risk factors
and first step is to identify cause of high incidence and mortality in some of the regions.

The analysis of data from COVID-19 patients is essential to understand the clinical prognosis, to develop potential ther-
apeutic agents for novel pathogen and to design intervention strategies such as for vaccine implementation. However, many
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studies on COVID-19 have investigated mortality and incidence data using survival models without considering the presence
of competing risks. Hence, for given clinical data, there is a need to identify appropriate statistical models which are necessary
to analyze complex clinical information. Often either competing events are ignored or inappropriate regression based statistical
methods are used in time-to-event analysis. However, these events can be extremely informative in understanding impact of risk
factors under certain circumstances. Standard logistic regression is a popular tool for examining associations between risk factors
and the event of interest if patient data are available.

In this study, the competing risks framework is described and problems occurring from analysis of event time data are pre-
sented. The goal of the research is to compare and contrast selected regression approaches for competing risks using COVID-19
reported data from USA. In particular, cause-specific hazards, sub-distribution hazards, and the pseudo-observation approaches
are used to perform comparative analysis of survival data. The competing risks setting is described in Section 3, including discus-
sions on different views on the competing risks situation and on the non-identifiability problem, and presentation of relevant
terms/quantities used for description of competing risks data. In Section 4, regression models for the competing risks setting,
which are proposed in the literature, are described and compared regarding model assumptions, applicability, and interpretation
of obtained results. Various extensions of the basic models are mentioned and literature for further reading is given. A special fo-
cus lies on the derivation of estimates for cause-specific and sub-distribution hazard rates and also deduce the regression models
based on pseudo-observations. In Section 4, various simulation studies are performed to estimate the cause-specific and sub-
distribution hazard rates and hazard ratios. In Section S, applications of the presented methods for competing risks regression
are illustrated with real life examples on COVID-19. Finally, the presented methods as well as the findings from the simulation
study and the data analyses are discussed in the last section.

2 Methods and Materials

2.1 Data Sources

The data of novel coronavirus (COVID-19) are obtained from Kaggle.com website (Kaggle, 2019, accessed in March-April
2020). The website contains the number of new cases that are being reported daily from different countries (that is, Italy, Spain,
Germany, USA etc.) around the world. The dataset also has information about 50 U.S. states and as a case study we have
considered data from the first two months of reported COVID-19 cases until the third week of April 2020. In this work, at first
we compare the mortality rate among USA and Italy choosing as two groups and next we fit the underlying models to the data
set of prevalence due to COVID-19 in the New York city where the highest number of cases were reported from U.S.

2.2 Competing Risks Preliminaries

In survival analysis, competing risks occur frequently. A competing risk is an event whose occurrence precludes the occurrence of
the primary event of interest. In a study examining time to death attributable to cardiovascular causes, death attributable to non-
cardiovascular causes is a competing risk (Austin et al., 2016). When an individual is under risk of failing from X distinct types
of event, these different event types are called competing risks which are broadly covered in the statistical literature (Beyersmann
et al,, 2012). An alternative approach to competing risks is consideration of a bivariate random variable (7', D), where T is
a random variable for the event time and D is a random variable for the event type. The competing risks process can then
be interpreted as a special case of a multi-state model (Andersen and Keiding, 2012), leading to the intuitive definitions of
cumulative incidence functions and cause-specific hazard rates. For each individual, 7 = 1,2,...,, the couple of event time
or last time known to be free of any event #; and a status variable indicating the type of event d; € {1,2,...,K} or a censored
event time (d; = 0) is observed. As in the competing risks setting individuals can fail from different event types, measures used
for standard survival analysis with only one certain type of event have to be adapted. In this section the most important and
commonly used concepts and quantities have been presented.

2.2.1 Cumulative Incidence Function (CIF) of Occurrence of " Type

The probability for occurrence of every event type & out of the possible event types 1,. .., K up to a given time ¢ can be described
in the presence of competing risks. That probability is mostly known as “cumulative incidence function” (CIF) for event type
k in the literature. In this work, symbolically it is denoted and defined as

Fi(t)=P(T <t,D=k) 1)

where T is a strictly positive random variable corresponds to the “event time” and D is a random variable for the “type of
event”. Apart from this, there exists some another important names in statistical field known as “crude event probability” (Tsi-
atis, 2005; Lambert et al., 2010) or “sub-distribution function” (Resche-Rigon and Chevret, 2006; Pintilie, 2007). The name
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“sub-distribution function” is motivated by the fact that F;(#) is not a real distribution function since it does not converge to
one as ¢ tends to infinity. But to the overall probability for an event of type £,

lim Fiu(e) = P(D = k). (2)

For a given time ¢, the CIF of all X event types sum up to one minus the probability of being event-free up to time #, which is
sometimes called the “overall survivor function”. Symbolically it is denoted and defined as

K
Sup(2) =1= " Fu(0)). (3)
k=1
K —_—
wJim Y Fi(0) =1 (4)
k=1

To estimate the CIF for event type &, the “cause-specific hazard function” is introduced in the next section.

2.2.2 Cause-specific Hazard Rate of #™" Type

In the field of survival analysis, hazard rates play an uttermost important role for analysis of competing risks dataset. The “cause-
specific hazard rate” for event type £ is the natural adaptation of the common hazard rate providing an individual’s probability
for failing from an event of type # in an infinitesimal small time interval # to £ + Az given the individual did not fail from any
event up to time ¢. Symbolically it is denoted and defined as

Pt<T<t+0t,D=Fk|T =1
At '

(5)

Ae(2) = 25 (1) = Altiilo

Considering mutually exclusive terminal events, the cause-specific hazards for all K event types at time ¢ sum up to the overall
hazard rate for failing from any event at #:

K
Dt (2) = D" 2a(2). (©)
k=1

In analogy to standard survival analysis the cumulative cause-specific hazard rate for event type £ at time ¢ is the integral over the
cause-specific hazard function from time 0 to #:

IVMOE /0 (5) ds. (7)

The “overall survivor function” S, (¢) denoting the probability of being free from any event up to time #, depends on the
(cumulative) cause-specific hazard functions for all X types of event, which sum up to the overall (cumulative) hazard rate:

K
Sup(2) = exp (— > Ak(ﬂ) = exp(—Auyr (1)). (8)

k=1

The relationship between the CIF for event type £ and the cause-specific hazard functions can be expressed as

t t K
Fi() = [) () Sosf (5)ds = /0 A4 (s) exp (— Zl;(:)) ds. 9)
[=1

As can be seen from (9), the CIF for event type k£ depends on the cause-specific hazard functions for all X types of event,
indicating that risks for all event types have an effect on the probability for an event of type £.

2.2.3 Sub-distribution Hazard Rate of 4" Type

In the presence of competing risks, Gray (1988) introduced the sub-distribution hazard rate for event type £, denoted as y; (),
which differs from the cause-specific hazard rate shown in (5) by the definition of its risk set. For the sub-distribution hazard
rate for event type k at time #, individuals that failed from an event other than £ prior to # remain in the risk set. The underlying
hazard rate is defined as follows:

(t<T<t+0t,D=k|{T 2t} U{T<t,D+k})

P
7(0) =7 (r) = Jim o . (10)
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The link between the CIF and the sub-distribution hazard is as follows:

Fi(2) = 1= exp (=T(2)) (1)

with I, () denoting the cumulative sub-distribution hazard

T(e) = ) y(s) ds. (12)

Competing events do not have to be accounted explicitly since these are considered implicitly in the adapted risk set. As y(#)
provides the properties of a hazard rate for the sub-distribution function Fy(2), it is called sub-distribution hazard.

The sub-distribution hazard became very popular in recent years since it has direct relationship with CIF and different meth-
ods focusing on the sub-distribution hazard have been proposed in regression model (Fine and Gray, 1999) which is discussed
later in sections 4.2.1 and 4.2.2.

2.2.4 Relationship Between Cause-specific and Sub-distribution Hazard Rate

The relationship between the cause-specific hazard rate and the sub-distribution hazard rate can be derived analytically via the
relationships to the CIF shown in (9), (11) and (12) (Beyersmann and Schumacher, 2007). A detailed derivation of that rela-
tionship is presented (Beyersmann et al., 2012). In the case of two possible endpoints,

ﬁz(f))

1+
So.gf(t)

A4(8) = n(2)

(13)

with 41 (¢) denoting the cause-specific hazard for the event of interest (k£ = 1), y1(#) the corresponding sub-distribution hazard,
F4(¢) the CIF for the competing event (k = 2) and S,,7(#) the overall survivor function, providing the probability of freedom
from any event up to ¢ time. The relationship given by (13) indicates that the sub-distribution hazard for event type £ = 1
is related to the cause-specific hazards of both event types, as the cumulative incidence function for event type £ = 2 and the
overall survivor function depend on the cause-specific hazards for both types of event. Therefore, analysis of the cause-specific
and the sub-distribution hazards will generally lead to different results in presence of competing risks. Figure 1 depicts the cause-
specific and the sub-distribution hazard for an event of interest for various values of the cause-specific hazard for the competing
event. For all scenarios, 1; = 0.10 are chosen as the cause-specific hazard for the event of interest and for the competing event,
cause-specific hazard (1,) are chosen as 0.01, 0.05, 0.10 and 0.25 respectively.

The difference between cause-specific and sub-distribution hazard depends on the risk for a competing event which is driven
by the cause-specific hazard A, () (shown in Figure 1). It follows from (13) and from definition of the risk set provided in (10)
that the cause-specific and the sub-distribution hazard are equal in absence of competing risks, i.c., in the standard survival
setting with one possible endpoint, and that they have to approach the same value for # going to zero whenever competing risks
are present. From (11), it follows that the sub-distribution hazard has to converge to zero whenever ¢ tends to infinity, since the
CIF approaches a value smaller than one in presence of competing risks, and therefore the cumulative sub-distribution hazard
function has to converge to a finite value.

In general, suppose we have 7 different types of failure, and the respective times to failure are 71, 75, T3,..., T;,. But we
observeonly 7 = min(T3, T5,..., T5,). Sometimes these 71, T, T3,. .., Ty, are called the latent variables. Central to competing
risks data is the concept of cause-specific hazard functions, which focuses on what the observed survival is due to a certain cause
of failure, while acknowledging that there are other types of failures operating at the same time. There might also be independent
censoring C, in which case, we observe X = min(7', C) and 0 = I(T < C); whereas, 9 = 0 is chosen if the case is censoring and
various aspects are to be chosen for the purpose of more than one variable.

3 Analysis

Several regression methods in case of competing risks are introduced in recent years. The most commonly used approaches
are the cause-specific hazards regression introduced by Prentice et al. (1978) and also the sub-distribution hazards regression
proposed by Fine and Gray (1999). In this section, these regression approaches have been described.

3.1 Regression Approaches

3.1.1 Cause-specific Hazards Regression

In survival analysis, the competing risks setting can be used whenever the presence of censored observation has to be considered
and we have to estimate the effect of covariates on the cause-specific hazard rates (Prentice et al., 1978). For each individual 7 the
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Figure 1: For all scenarios in the four graphs, 4; = 0.10 is chosen as the cause-specific hazard for the event of interest but for the
competing event, cause-specific hazard (4,) are chosen as 0.01 (top left), 0.05 (top right), 0.10 (bottom left) and 0.25 (bottom

right).

data (#, f;, 0;, %;) are observed, where #; is the observed time, /; is the observed cause of failure, J; is a censoring indicator returning
the value of zero for a censored observation and a value of one if any event was observed, and x; is the vector of covariates, which
is assumed to be constant over time and S(#; | x;) be the conditional survivor function. For a censored observation an arbitrary
value can be set for j;. The likelihood function under independent censoring can be written in the following form:

L= ]_[ (zﬁ(t,. | %)% S(t, | x,»))
=1

n K t;
-T] {Aﬁm )" | exp (— [ xt1) d)} (14)
i=1 I=1 0

which is an adaptation of the likelihood function used in standard survival analysis considering the relationship between the
overall survivor function and the cause-specific hazards shown in (8).

By virtue of the representation of competing risks data and covariates as a triple (¢, d;, x;) with d; indicating the type of
event (d; € {1,...,K}), or, a censored observation (d; = 0), the likelihood function can be expressed equivalently in the

following form:

— I~

(2o 13 D5 | x»))

0
n K t;
=11 []‘[ {Mr,- )/ @D ] Jexp (— / Qs | ) d)}
I=1 0

=1 | /=1

~
|

(15)

The form of the likelihood function presented in Equations 14 or 15 leads to some important implications. These are as follows
(Prentice et al., 1978):
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(i) The hazard functions and the regression coefficients are identifiable and can be estimated from the observed data.

(i) The score function for estimation of regression coefficients for the event of interest does not change, when all observed
competing events are treated like censored observations. Therefore, standard methods for estimation of hazard rates or
hazard ratios can be applied treating competing events as censored observations.

(iif) Covariate effects on cause-specific hazards for different event types can be estimated in separate regression models. When
regression models for all event types are fit to the data in order to model the complete competing risks process, different
sets of covariates might be considered for different types of event, denoted by an according index.

The effect on the cause-specific hazard of a certain event type does not necessarily translate into an effect on the event prob-
ability, represented by the CIF. This fact is further discussed and illustrated in Section 4.1.2, describing how the CIF can be esti-
mated from proportional cause-specific hazards regression models for a given vector of covariates and in Section 4.3 discussing
differences between the cause-specific and the sub-distribution hazards regression model.

To estimate covariate effects on the cause-specific hazard rates (Prentice et al., 1978), assuming proportional cause-specific
hazards such as

Liltlx) = 2o (2) exp (8] %) (16)

Here A;.0(#) describes the cause-specific baseline hazard for event type £, which is considered as high-dimensional nuisance
ks p yp g

parameter, when covariate effects are estimated, x is the P-dimensional vector of covariates and By, is the vector of regression

coefficients of length P for the £ th type of event.

Predicting the CIF  The CIF for a certain type of event can be estimated under consideration of the covariate information.
Assuming the vector of event times with an observed event of type £, denoted as ¢, = (£41,..., %) to be ordered and the
estimator for the CIF of event type & can be written in the following form:

Fy(elw) = " Aa(tusl)8 (zriny v)
i:ty; <t
. K
= > Akote) exp(Blx) exp | = D Asltagi )
i:tp; <t /=1
K
= > dko(te) exp(Blx) exp |~ D" Aso(tainy) exp(B] ) (17)
ity <t [=1

While competing events can be treated like censored observations for the estimation of cause-specific hazard rates, competing
events have to be considered for the estimation of cumulative incidence functions. As can be seen in (17), the cumulative inci-
dence function for event type £ depends on the cause-specific hazards of all event types, as previously discussed in Section 3.2.
Therefore, an observed effect on the cause-specific hazard does not necessarily translate into an effect on the CIF. This is further
discussed in Section 4.3.

3.2 Sub-distribution Hazards Regression

In this section, sub-distribution hazard rate is described to develop a regression model for time-to-event data whenever the com-
peting risks is present. Fine and Gray (1999) proposed to use a Cox regression approach for the sub-distribution hazard for an
event of interest, here £ = 1, assuming proportional sub-distribution hazard rates as follows:

71(tlx) = y1,0(2) exp(] x) (18)

where y1(¢|x) denotes the sub-distribution hazard for the event of interest depending on the vector of covariates x, y1,0 (#) is the
baseline sub-distribution hazard for an individual with all covariates equalling zero and #; is the vector of regression coefficients.
As the competing events are incorporated implicitly in the adapted risk set (Section 3.3) only a model for the event of interest
k = 1is presented. In general, the proportionality assumption cannot hold true for separate sub-distribution hazards regres-
sion models for different types of event (Beyersmann et al., 2012). Grambauer et al. (2010) investigated the impact of model
misspecification. They demonstrated that a sub-distribution hazards regression model has a proper interpretation, even when
the sub-distribution hazards were falsely assumed to be proportional. The estimated regression coefficients can be interpreted
as average sub-distribution log-hazard ratios. In this case, the average sub-distribution hazard ratio will depend on the length of
follow-up (Schemper et al., 2009).
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For estimation of the regression coeflicients in a sub-distribution hazards regression model a different risk set is needed than
for to the cause-specific hazards regression model described in Section 4.1.1. While estimation of the regression coeflicients is
straightforward when complete data are observed for all individuals and under administrative censoring, the estimating proce-
dure becomes more complicated for incomplete data with non-administrative censoring, in order to obtain unbiased estimates
(Fine and Gray, 1999).

Predicting the CIF The predicted CIF for a given vector of covariates x can be obtained from the estimated regression
coeflicients using the relationship between the sub-distribution hazard and the cumulative incidence function (Equation (11))
without further consideration of effects on the competing events:

Fy(tle) =1 - exp(—ﬁ(ﬂx))
—1- exp(— J 1G5l d,«)
=1- exp(— fot 7150 () exp(flex) dx) (19)

Estimation of a confidence band for the CIF derived from a proportional sub-distribution hazards model is also important role
in regression purpose (Fine and Gray, 1999).

3.3 Differences Between Cause-specific and Sub-distribution Hazards Regression

The two hazard-based regression approaches: (i) the cause-specific and (ii) the sub-distribution are the most popular methods for
analysis of competing risks data in medical settings. Due to the similarity of the approaches, the regression coefficients obtained
from the regression models are often interpreted in an equal manner without considering that the methods focus on different
quantities, namely either the cause-specific or the sub-distribution hazard. Depending on the amount of competing events and
on the covariate effects on the competing events, the two approaches can able to provide substantially different regression coef-
ficients since the cause-specific hazards regression aims on the instantaneous risk, whereas the sub-distribution hazard is directly
linked to the cumulative incidence function. These differences are displayed and discussed with some simulated examples. Other
illustrations can be found in Putter et al. (2007); Allignol et al. (2011); Dignam et al. (2012).

For each scenario competing risks data with two possible endpoints, one event of interest (¥ = 1) and one competing event
(k = 2), with cause-specific hazards depending on one binary covariate with groups called P(X = 0) and Q(X = 1) are
generated for 10,000 subjects. Time-constant cause-specific hazard rates are defined for both groups. So, the assumption of
proportionality holds for the cause-specific hazards, leading to time-independent cause-specific hazard ratios. For convenience,
only administrative censoring after five years is considered in the examples given in Section 5. Numbers of patients at risk are
displayed under the corresponding figures for both groups to illustrate the influence of competing events on the risk set. The
cause-specific hazard ratio and the sub-distribution hazard ratio will generally be different and proportionality for one of these
measures contradicts proportionality for the other one. For analysis of the simulated data, proportional hazards regression
models for the cause-specific and the sub-distribution hazards as described in Sections 4.1.1, 4.1.2, 4.2.1 and 4.2.2 are applied,
although the assumption of proportionality is violated for the sub-distribution hazards model. The estimated sub-distribution
hazard ratio can be interpreted as average sub-distribution hazard ratio (Grambauer et al., 2010; Hjort, 1992).

3.4 Regression Models Based on Pseudo-observations

By using pseudo-observations, a method for the estimation of covariate effects on state probabilities in multi-state models has
been used in various fields (Andersen and Keiding, 2012). Since a competing risks model can be interpreted as a special case of
a multi-state model, this approach can be adjusted for the competing risks purpose (Klein et al., 2008). The pseudo-value ap-
proach with a complementary log-log link provides results similar to the hazard-based regression models. Generally, the pseudo-
observation approach can be considered to estimate effects of covariates on any function of event times /(7), if an unbiased
estimator & exists for

g =E(f(2)). (20)

A summary of different approaches for survival analysis based on pseudo-observations has been described by Andersen and
Perme (Andersen and Perme, 2010). Main idea of the approach is to obtain quantities which allow application of standard
methods for data analysis without consideration of censored observations. The estimated pseudo-observations b; (where 7 =
{1,2,...,n}) which are assessed via leave-one-out estimates (Miller, 1974) for some measure of interest, can be used for that
purpose such as

b =nb— (n—1)69. (21)
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Here & is the estimated measure of interest using all 7 observations and 0] points out the estimated measure of interest derived
from all but the 7™M observation. The pseudo observations can be estimated for one fixed time point 7y, or, for a pre-specified
number of time points 7 = (73,..., 7). If multiple time points are considered, an 7z X A matrix of pseudo observations is
obtained. For regression purposes these pseudo-observations g’,-h can be used as response variable (Klein and Andersen, 2005) in
a generalized linear model which is as follows:

g(gz'hlxz') =ap +‘8sz‘ (22)

where g(.) is a link function as the logit or the complementary log-log function and x; is the vector of covariates of subject 7. The
influence of the covariates on the pseudo-observations which translates to an influence of the covariates on the measure of interest
f(T), can be estimated by using adequate methods for generalized linear models (GLM). In the case of multiple time points,
the generalized estimation equation (GEE) approach (Liang and Zeger, 1986) is used for estimation and inference to account for
repeated measures on the same subjects in order to obtain robust and valid standard errors under independent censoring. Apart
from this, there are many various assumptions present for the working covariance matrix used in the GEE model (Klein et al.,
2008). Since any relevant effects did not find of the choice of the working covariance on the estimated regression coeflicients
and standard errors, so the use of an independent working covariance structure is proposed for this method (Klein et al., 2008).

For the competing risks setting the relevant measure £(7’) is the CIF for event type . So, for each individual 7 a pseudo-
observation LA9,~19 is derived for each of the predefined time points in 7 by using the CIF estimated from all subjects and the estimate
based on all but the 7™ individual such as

N ~ (1)
O = nFy(7y) — (n =D F;, (7). (23)

If censoring is absent in the whole dataset, the pseudo-value indicates, whether subject 7 failed from cause £ up to time 7j, and
d; indicating the type of event where d; € {1,...,k} ie.,
5 1 ift; < 7jandd; =k,
ih =
0 elsewhere.
The mean of the pseudo-values for each considered time point equals the estimate of the CIF. In presence of censored observa-
tions, pseudo-values can be smaller than zero for individuals still under observation (i.c., for individuals with a censored observa-
tion or for individuals that failed from a competing event, or larger than one after an event of interest is observed, with the actual
value depending on the observation time and the amount of censoring). When a complementary log-log link is used between

the response (the pseudo-values) and the linear predictor, the regression coeflicients can be interpreted as sub-distribution log
hazard ratios, if all covariates are time-independent (Klein and Andersen, 2005). The model is as follows:

In(=1n(8p)) = a +p" (24)

The analysis can be performed using the R with package “geepack” (Heojsgaard et al., 2005; Klein and Andersen, 2005) that
allows to specify a complementary log-log link between response and linear predictor.

4 Numerical Results

4.1 Theoretical Simulation Scenarios

For evaluating the performances of the proposed estimators, we conduct simulation studies in different scenarios described in
the following and also illustrate the differences in results obtained from cause-specific and sub-distribution hazards regression
in various scenarios.

Scenario 1 Inthefirstscenario, the difference between the regression coefficients estimated from a proportional cause-specific
hazards and a proportional sub-distribution hazards regression model with two possible endpoints, but a group difference only
for the event of interest, is investigated. The cause-specific hazards for the event of interest are chosen to be ;(¢|X = 0) = 0.2
and 2; (¢|X = 1) = 0.4, so a cause-specific hazard ratio of 2 is expected for the event of interest. For the competing event (k = 2)
the hazard rates are chosen to be equal for both groups 4> (¢|X = 0) = A, (¢|X = 1) = 0.3 which implies that there is no group
effect on the risk for the competing event. The estimated cause-specific hazard ratio for the event of interest is close to 2, namely
exp({[?l) = 2.01, the estimated sub-distribution hazard ratio for the event of interest is exp(#;) = 1.81, which is slightly smaller
than the estimated cause-specific hazard ratio due to the different risk sets used. The estimated cumulative incidence functions
for both groups are shown in Figure 2. As the cause-specific hazard for the competing event is the same for both groups, the
estimated cumulative incidence functions do not cross.
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Figure 2: Cumulative incidence function for the event of interest for Scenario 1.

Scenario 2 In the second scenario the cause-specific hazards for the event of interest (£ = 1) for both groups which gives a
cause-specific hazard ratio for the event of interest of exp(f1) = HR{_; = 2. The hazard ratio for the competing event (k£ = 2)
is defined to be even larger with the cause-specific hazard in group Q being 0.8 and the hazard for group P being 0.2, translating
a cause-specific hazard ratio for the competing event of exp(82) = HR;j_, = 4. That scenario corresponds to an illustration
presented by Putter et al. (2007). The cumulative incidence functions for event £ = 1 are displayed in Figure 3. Due to the
higher amount of competing events in group Q (X = 1) compared to group P (X = 0), the number of patients at risk is
decreasing more slowly in group P. Therefore, a higher incidence of events of interest is observed in group P, although patients
of group Q had a higher cause-specific hazard for experiencing an event of type & = 1.
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0.8
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Cumulative incidence

0.0 ~

Time
Figure 3: Cumulative incidence function for the event of interest for Scenario 2.

In that situation the higher cause-specific hazard of group Q compared to group P does not translate into a higher incidence
of events of type 1 in group Q for late time points. Analysis of the simulated data gives an estimated cause-specific hazard
ratio of 1.99, but a sub-distribution hazard ratio of 0.82, revealing different signs of the regression coefficients. The covariate
effect on the sub-distribution hazard has to be interpreted as time-averaged effect, since the assumption of proportional sub-
distribution hazards is violated. In the sub-distribution hazards regression model, regression coeflicients are directly linked to
the CIF. Since the sub-distribution hazard for the event of interest is higher for group P than for group Q for most time points,
a higher average sub-distribution hazard for group P is estimated, translating to an average sub-distribution hazard ratio smaller
than one. Cause-specific hazards regression shows the covariate effect on the instantaneous risks, and sub-distribution hazards
regression represents the effect on the cumulative incidence function which lead to various fruitful conclusions regarding the
covariate effect on the event of interest.

Scenario 3 In a third scenario the setting is similar to scenario 2, but with a much lower cause-specific baseline hazard for
the competing event (1, (¢|X = 0) = 0.05, 1,(¢|X = 1) = 0.2), leading to a smaller amount of observed events of type & = 2.
In the simulations, 6029 events of interest are observed but only 2297 individuals fail from a competing event. In this case, the
difference between estimated cause-specific and sub-distribution hazard ratios is smaller than in scenario 2 with exp ([81) =195
and exp(#1) = 1.28. The estimated cumulative incidence functions obtained from the simulated dataset are shown in Figure 4.
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Figure 4: Cumulative incidence function for the event of interest for Scenario 3.

Scenario 4 The cause-specific hazard rates for the event of interest are chosen to be equal for both groups, leading to a cause-
specific hazard ratio of one (41(¢|X = 0) = 0.4, (L (#|X = 1) = 0.4, exp(81) = HR_ | = 1). For the competing event,
a cause-specific hazard ratio of exp(£,) = 3 is chosen for the simulation (1,(¢|X = 0) = 0.1, 4;(#|X = 1) = 0.3). The
corresponding cumulative incidence functions are displayed in Figure 5.
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Figure 5: Cumulative incidence function for the event of interest for Scenario 4.

Due to the different risks for the competing event, leading to a higher number of competing events in group Q than in
group P, the number of patients at risk decreases faster in group Q. Therefore, a higher incidence of events of interest is ob-
served in group P compared to group Q. A cause-specific hazard ratio of 1.03 is estimated, whereas sub-distribution hazards
regression reveals a hazard ratio of 0.70, since the cumulative incidence curves differ between both groups. In such a situation,
careless interpretation of the sub-distribution hazards regression coefficient might lead to biological implausible conclusions,
interpretation of the cause-specific hazards regression coefficient for the event of interest, ignoring the effect on the competing
event, will miss important information on the group difference regarding the other type of event and consequently on the event
probabilities for the event of interest.

The simulations described here reveal that substantial differences in the results of cause-specific and sub-distribution haz-
ards regression may be present in certain scenarios. Careless interpretation of the estimated regression coefficients may lead to
wrong conclusions regarding associations between covariates and risks or event probabilities. Therefore, investigators should be
aware of differences between cause-specific hazards and sub-distribution hazards regression to avoid misuse of the methods and
misinterpretation of obtained results. Both regression models are applied to a real data example for investigation of occurrence
of blood stream infection during neutropenia (when a person has neutrophils, i.e., an abnormally low count of a type of white
blood cell) after peripheral blood stem-cell transplantation and also compared and discussed differences in the methods and in
the obtained results (Beyersmann et al., 2007). Besides, Latouche et al. (2013) have recommended to present covariate effects
obtained from cause-specific hazards regression models for all possible types of event and from a sub-distribution hazards regres-
sion model for the event of interest, accompanied by estimates of the cumulative incidence functions, to assess whether there is
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Figure 6: Cause-specific hazards regression model: X = 0 — Italyand X =1 — USA.

a direct effect of the covariate of interest on the CIF (as in scenario 1) or an indirect effect caused by an effect on the competing
event(s) (as in Scenario 4). Presentation of results obtained from the different regression models and display of the cumulative
incidence functions should avoid pitfalls and possible misinterpretations discussed in the examples here.

4.2 Application of Regression Approaches to COVID-19 Outbreak in USA

Example 1 In this section, we have described substantial differences in the results of cause-specific and sub-distribution
hazards regression dataset of the patients due to SARS-CoV2 or COVID-19. In this work, competing risks data with two possible
endpoints, one event of interest (£ = 1) and one competing event (k = 2), with cause-specific hazards depending on one binary
covariate with groups called P (X = 0) and Q (X = 1) are generated for COVID-19 patients. In this present study, we will focus
on an example studying patient survival on COVID-19, where death is the event of interest. So, in this work we proceed with
the mortality rate and illustrate only the prediction related to the death with COVID-19. Firstly, our aim is to demonstrate the
impact of considering competing risks to estimate the cumulative incidence function. We compare the event of interest (i.e.,
mortality rate) among USA and Italy choosing as two groups in this work. It is assumed that P (X = 0) corresponds to Italy
and Q (X = 1) corresponds to USA. Figure 6 demonstrates that the death rate is highly increasing in USA than Italy during this
prevalence of coronavirus disease. In survival analysis, conventional methods ignore the competing events such as the Kaplan
Meier (KM) method, standard Cox proportional hazards regression (Noordzij et al., 2013).

As this leads to a difference in the estimated cumulative incidence functions for £ = 1, which are shown in Figure 6, that
is larger than in the absence of competing events, the estimated sub-distribution hazard ratio is larger than the estimated cause-
specific hazard ratio with exp(#;) = 1.84 and exp(/;ﬁ) = 1.13. Due to the opposite direction of the cause-specific hazard ratios
for both event types, leading to the same overall hazard, which is defined as the sum of the cause-specific hazards for both types
of event as described in (6), the number of patients at risk are similar in both groups for all considered time points.

Example 2 We extend our results to regression analyses that allow to investigate necessary explanatory variables, which are
topics currently being pursued, using standard regression models for competing risks data of COVID-19 patients. Application
of competing risks regression models including details on the applied methods and results obtained from analyses which are
presented in this section. The effect of risk group allocation on cause-specific hazards adjusted for age, gender and also a pro-
portional sub-distribution hazards model fit to the data set of prevalence due to COVID-19 in the New York city where is being
hit the hardest by the novel coronavirus spreading across the U.S. In this work, the effects of response variables, i.e., gender (1 as
male, 2 as female) and age (0 as < 65, 1 as > 65) are analyzed. The exploratory analysis of COVID-19 data set of New York city
is shown in Table 1.

The R function “coxph” from library “survival” is used for estimation of the regression coeflicients discussed in section 4.1.1
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Table 1: Exploratory analysis of COVID-19 data (consider mortality rate of New York).

Variable Description Statistical Summary  Percentage
1= Male (10961) 62%
Gender Gender 2 = Female (6721) 35%
. . 0=<65 (4954) 28%
Age Age of patient (in years) 1=> 65 (12728) 729%
Time Reporting date (in days) 60 -

(Therneau, 2011). The incidence data set of New York city due to COVID-19 are shown in both (gender and age) purpose in
Figures 7 and 8. The bootstrap method is used to quantify the uncertainty associated with a given statistical estimator or with
a predictive model. It consists of randomly selecting a sample of 7 observations from the original data set. This subset, called
bootstrap data set is then used to evaluate the model (Lau et al., 2009). So, at first we have demonstrated the coefficient of
determination (R?) for the models, confidence intervals for an R* value (proportion of variation in the outcome explained by
the predictor variables included in the model) using bootstrap method for goodness-of-fit of the models and model validation
purpose. In both cases R? is greater than 0.9 (i.e., 0.994 with 95% C.1. (0.853, 1.132) and 0.996 with 95% C.L. (0.856,1.137) for
cause-specific and sub-distribution regression model respectively) which signifies for better fit of underlying models.

Both gender and age have a significant effect on the cause-specific hazards for this type of event (results are shown in Table 2).
The result provides more than 2 times higher risk of dying from a COVID-19 for patients who are older than 65 years and the
risk is also higher nearly 2 times more if the person being male. Because from Table 2 we get exp(co.eff.) = 1.824 which indicates
that the risk is higher (nearly 2 times more) if the person being male. We also get exp(co.eff.) = 2.223 (from Table 2) which
suggests that the risk of dying is higher (more than 2 times) if the patients are more than 65 years old.

Table 2: Result of the cause-specific hazards regression model.

co.eff. exp(co.eff.) Std.error P-value

Gender  0.601 1.824 0.337 <0.01
Age 0.800 2.223 0.375 <0.01

Cumulative incidence functions are predicted from the Cox regression models following (17) in section 4.1.2 using the
mean of gender, i.c., the proportion of patients with gender male (62.5%), and the mean of the indicator variable for age, i.c.,
the proportion of patients being atleast 65 years of age (75%). Cause-specific baseline hazards, which are required for calculation
of cumulative incidence functions are derived and the predicted cumulative incidence curves are displayed in Figure 9.

A proportional sub-distribution hazards model as described in Equation (18) is fit to the data in order to assess the influence
of gender and age on the sub-distribution hazards for both types of event. The analysis is performed using the function “c77” in
the R library “cmprsk” and the results from the sub-distributional hazards models have to be interpreted as time-averaged effects
(Grambauer et al., 2010).

Results of the regression model investigate the influence of covariates on the sub-distributional hazards and provide that both
gender and age have a significant effect on the these underlying hazards same as cause-specific hazards for this type of event (shown
in Table 3). Effects on the sub-distributional hazards can be translated directly to effects on the cumulative incidence functions
and the predicted cumulative incidence curves are displayed in Figure 10. In order to analyse the data using the approach which
is sketched in section 4.4, pseudo values are estimated for each individual and used as response in a GEE model (Klein et al.,
2008). Besides, Andersen et al. (Andersen et al., 2003) introduced a calculation technique for estimation of covariate effects on
event probabilities in multi-state models using pseudo-values, that are derived by jackknife estimates from the original data. Ina
first step, the CIF for death due to COVID-19 is estimated for 4 different points in time (2 weeks intervals equally spaced from
baseline to 2 months of follow-up) for the whole data-set. Pseudo-observations are calculated from these 17,671 X 4 estimates

Table 3: Result of the sub-distribution hazards regression model.

co.eff. exp(co.eff.) Std.error P-value

Gender  0.601 1.824 0.327 <0.01
Age 0.800 2.225 0.291 <0.01
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Figure 7: Incidence data (mortality rate) for gender purpose in New York.
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Figure 8: Incidence data (mortality rate) for age purpose in New York.
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Table 4: Regression coefficients obtained by the pseudo-value approach.

co.eff. exp(co.eff)) Std.error P-value

Constant 2.317 10.145 0.730 <0.01
Gender 0.681 1.976 0.408 <0.01
Age 0.855 2.351 0.360 <0.01
Time = 2 weeks  1.493 4.450 0.299 <0.01
Time = 4 weeks ~ 2.199 9.016 0.331 <0.01
Time = 6 weeks ~ 2.596 13.410 0.353 <0.01
Time = 8 weeks  4.008  54.652 0.989  <0.01
; Death
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Figure 9: Estimated CIF for COVID-19 for cause-specific hazards regression.

following Equation (23).

In this analysis, the estimation of the cumulative incidence functions, are monotonously increasing and exp((/;]) for gender
and age can be interpreted as sub-distribution hazard ratio shown in Table 4. These pseudo-values are used as dependent variables
in a GEE model, to account for multiple observations of the same subjects and 4 dummy variables indicating the time point are
included as covariates. The independent working covariance matrix is used in the GEE model (Klein et al., 2008).

The influence of the covariates of interest on the pseudo-values is estimated using a complementary log-log (cloglog) link
between the response and the linear predictor, applying the function “geese” of the R library “geepack” (Hojsgaard et al., 2005).
So, the estimated coeflicients can be interpreted as logarithms of sub-distribution hazard ratios. The results of the GEE model
are presented in Table 4. Effects observed in the pseudo-value approach are similar to those obtained in the Fine and Gray model
(Fine and Gray, 1999) and can be interpreted analogously as effects on the sub-distribution hazard, translating to effects on the
CIF (Klein et al., 2008). As described by Andersen and Perme (2010), the standard errors obtained in the pseudo-value approach
are higher than those in the Fine and Gray regression model (Fine and Gray, 1999). Regression coefficients for the different time
points specified for calculation of the pseudo observations, which are partly presented in Table 4, are not of major interest, but
are necessary for estimation of the CIF. The estimated CIF derived from results of the pseudo-observation approach, which is
shown in Figure 11, is similar to the cumulative incidence functions obtained from the cause-specific hazards regression or the
sub-distributional hazards regression. The logistic regression ensuring the determination of the risk factors as probability is a
method that investigates the relationship of the result variables with independent variables in binary or multiple phases in all
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Figure 10: Estimated CIF for COVID-19 for sub-distribution hazards regression.
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Figure 11: Estimated CIF for COVID-19 for the analysis based on pseudo observation.



44 = S. GHOSH, G.P. SAMANTA, A. MUBAY!

Table 5: Comparison of models with AIC and BIC.

Model AIC BIC

Cause-specific 300.497 304.361
Sub-distributional ~ 300.001  304.051

areas of public health research (Agresti, 2007; Ghosh and Samanta, 2019a,b,c). So, it is also demonstrated how the coeflicients
can be interpreted after using logistic regression (also known as logit model) for the underlying dataset. The GLM logit model
provides that more than 1.23 times higher risk of dying from a COVID-19 for patients who are older than 65 years and the risk
is also higher near about 0.92 times more if the person being female.

4.3 Comparison of Models

One of the problems with the implementation of GEE models is that GEE is a non-likelihood-based method. Therefore, in-
formation criteria such as: (i) Akaike Information Criterion (AIC) and (ii) Bayesian Information Criterion (BIC) cannot be
directly applied, which creates problems with the choice of best model. So, in this work we have evaluated the Akaike selection
criterion (Akaike, 1974) and Bayesian Information Criterion, used to choose only between cause-specific and sub-distributional
hazard models (Kuk and Varadhan, 2013).

Table 5 provides the AIC and BIC value of the underlying models which measure goodness of fit. Generally, a good model
is the one that has minimum AIC and BIC among all the other models. A lower AIC or BIC value indicates a better fit. So,
sub-distributional model (AIC 300.001 and BIC 304.051 as shown in Table 5) is better than cause-specific model (AIC 300.497
and BIC 304.361 as shown in Table 5) for the underlying dataset. The application of the pseudo-value approach with a com-
plementary log-log link does not have any advantages over the sub-distribution hazards regression since it leads to similar results
with larger standard errors, which could also be observed for this data-set shown in Table 3 and Table 4. So, overall it can be
concluded that sub-distribution hazards regression is best among all underlying models.

5 Discussion

Adequate analysis of competing risks data is relevant for various applications. In medical research, time to a certain cause of death
might be of major interest in order to assess efficacy of a therapy or the predictive or prognostic effect of a certain risk factor,
with other causes of death being competing risks. This work describes different methods for analysis of competing risks data.
The availability of methods for adequate analysis of competing risks data have been assessed and the application of competing
risks methods for analysis and presentation of clinical data have also been investigated (Koller et al., 2012).

5.1 Advantages of Underlying Models

The adequate choice of the methods to use is still under discussion, but in recent years most authors are arguing for modeling the
whole competing risks process, which is naturally defined by the cause-specific hazard rates (Beyersmann et al., 2007; Andersen
and Keiding, 2012; Koller et al., 2012). The sub-distribution hazards regression allows a direct translation of the covariate effects
on the hazard rate to an effect on the event probability, which appears to be much more intuitive for applicants and readers
not familiar with the concept of hazard rates. For estimation of the sub-distribution hazard rate in the presence of censored
observations, a potential censoring time has to be determined for each individual to obtain unbiased estimates. While use of
the sub-distribution hazard rate appears appealing due to its direct relationship to the cumulative incidence function, its use is
argued against, because of the unintuitive risk set formulation (Andersen and Keiding, 2012). The application of the pseudo-
value approach with a complementary log-log link does not have any advantages over the sub-distribution hazards regression
since it leads to similar results with larger standard errors, which could also be observed for this data-set, but the pseudo value
approach in general allows more flexible modeling in settings where the proportional hazards assumption does nothold. Another
advantage is that, by definition, the CIF of each competing event is a fraction of the S(¢), therefore the sum of each individual
hazard for all competing events should equal the overall hazard. This property of CIF makes it possible to dissect overall hazard,
which has more practical interpretations. Apart from this, another advantage of this cause-specific proportional hazard model
is that it is easy to fit (by simply censoring for competing events) with any type of statistical software. It is important to realize,
however, that because the competing events are treated as censored observations, during follow-up, the number of patients at
risk is reduced (Noordzij et al., 2013). The cause-specific approach is that the estimated HR can be interpreted as an HR among
those patients who are alive and did not receive a transplant before. Another advantage of the cause-specific approach is that it is
easier to handle time-dependent covariates than with the sub-distribution hazards model (Noordzij et al., 2013). Cause-specific



LETTERS IN BIOMATHEMATICS = 45

model measures the association of an exposure on the corresponding event in which the competing event contributes only by
passively removing individuals from the risk set whereas sub-distributional model measures the association of an exposure to
the corresponding event in which the competing event actively contributes to the risk set. But both does not have to correctly
specify the unspecified baseline cause-specific hazard function (Lau et al.,, 2009).

5.2 Concluding Remarks

In the present work, both gender and age have a significant role in the prevalence predicted from the underlying approaches with
current coronavirus data. The results provides that more than 2 times higher risk of dying from a COVID-19 for patients who are
older than 65 years and the risk is also higher near about 2 times more if the person being male. Due to the high amount of cen-
sored observations, results from the two hazard-based methods are similar in this example. One major task remains the transfer of
available methods for the analysis of competing risks data to the medical community, in order to avoid misinterpretation of study
data, possibly leading to erroneous therapy decisions or risk stratifications, due to inadequate application of statistical methods
in the presence of competing risks. In this work, it is also observed that the recovery rate is higher than mortality rate although
mortality rate is increasing with the time-points because death rate due to COVID-19 is lower than confirmed cases. According
to data and statistics website Worldometer, the total number of 2,653,116 confirmed cases and 185,056 deaths from the coron-
avirus (COVID-19 outbreak as of April 23) were reported worldwide. Community transmission is evidenced by the inability to
relate confirmed cases through chains of transmission for a large number of cases, or by increasing positive tests through sentinel
samples. New York city is being hit the hardest by the novel coronavirus spreading across the U.S. The more than 5,600 deaths
in the city account for roughly one-third of all confirmed U.S. deaths from COVID-19, the illness caused by the coronavirus
reported by WHO (Hawkins et al., 11 Apr. 2020, accessed in April 2020). Interrupt human to human transmission including
reducing secondary infections among close contacts and health care workers, preventing transmission amplification events, and
preventing further international spread. WHO is providing guidance on early investigations, which is critical in an outbreak of a
new virus. The data collected from the protocols can be used to refine recommendations for surveillance and case definitions, to
characterize the key epidemiological transmission features of COVID-19, help understand spread, severity, spectrum of disease,
impact on the community and to inform operational models for implementation of countermeasures such as case isolation,
contact tracing and isolation.
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