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ABSTRACT
Since the beginning of the COVID-19 outbreak, much attention has been given to
the idea of flattening the curve of cases to reduce the harmful effects of an over-
loaded medical system. In this context, it is relevant to determine conditions to
ensure that the health care threshold capacity will not be exceeded. If such a situa-
tion is unavoidable, it would be useful to effectively quantify the potential negative
impact produced. In this paper, we consider an epidemiological SIR model and a
positive threshold M. Using a parametric expression for the solution curve of the
SIR model and the properties of the Lambert W function, we establish necessary
and sufficient conditions on the basic reproduction number R0 to ensure that the
infected population I does not exceed M. We also introduce and numerically ana-
lyze, five different quantities to measure the impact caused by a possible threshold
exceedance.

ARTICLE HISTORY
Received October 6, 2020
Accepted June 1, 2021

KEYWORDS
SIR Epidemiological Model,
Lambert W Function, Infected
Population Threshold

1 Introduction
During the current COVID-19 outbreak, much attention has been given to the idea of flattening the curve of infection (Figure 1)
to reduce the harmful effects of an overloaded medical system (Ferguson et al., 2020; Feng et al., 2020; Daud, 2021; Cooper et al.,
2020).

Figure 1: Flattening the curve.

As the number of active cases requiring hospitalization exceeds healthcare capacity, the disease’s mortality rates rise, and
there is a general decrease in the quality of medical care (Bigiani et al., 2020; Karaca-Mandic et al., 2020; Rossman et al., 2021).

It is desirable, therefore, to determine which specific conditions will ensure that the health care capacity will not be exceeded;
and, if such a situation is unavoidable, it would be useful to have a way to quantify the negative impact produced.
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If one considers that a negative impact is produced any time the number of active cases reaches a certain threshold and that
the more this number exceeds the threshold, the more damage is done to the health system as a whole, then, a possible way to
quantify this damage could be obtained by aggregating the number of active cases above the threshold, whenever they occur.
As an example, consider the area under the curve of active infected cases and above the threshold of health care capacity (the
hatched area in Figure 2).

Figure 2: Measuring the negative impact on the Health Care System.

If one is only concerned about the peak of infection, another simple measurement of a negative impact can be obtained by
the difference between the maximum number of active cases and the threshold of health care capacity (red line in Figure 2).

In general, note that, if one establishes some ideal parameter value that ensures that the peak of infections will be less than,
or equal to, the health care capacity, one could use the difference between the current and the ideal value as a measurement for
a negative impact. This difference, in some sense, answers the question: How far from the ideal situation are we?

In this paper, we consider an epidemiological SIR model and a positive threshold M. We establish necessary and sufficient
conditions on the reproduction number R0 to ensure that the infected population does not exceed M. We also propose five
different measures to quantify the impact caused by a possible threshold exceedance, based on the ideas of the aggregation of the
exceeding infected cases and the difference between current and ideal parameter values.

Throughout this paper, we will use an exact parametric solution for the SIR model, based on the work of Harko et al. (2014),
and we will also use the Lambert W function, also known as the product logarithm function (Corless et al., 1996).

Previous studies have considered the Lambert W function in the context of epidemiological models. In Reluga (2004); Wang
(2010); Pakes (2015), the Lambert W function is used to express the final sizes of the epidemiological variables, and in Xiao et al.
(2013); Wang et al. (2020), the Lambert W function is used to study an epidemiological model with a piecewise incidence rate.
The usefulness of the Lambert W function in these studies, as well as in ours, lies in the fact that it can be used to express the
solutions of some nonlinear equations in closed form, that cannot be solved otherwise in terms of elementary functions. We
include some results and properties related to the Lambert W function in Appendix A and additional details and applications
can be found in Corless et al. (1996); Lehtonen (2016).

The rest of this paper is organized as follows: Section 2 briefly recalls the epidemiological SIR model and presents a parametric
solution following the results in Harko et al. (2014). In Section 3, we establish conditions for the basic reproduction number
to ensure that the maximum of the infected population does not exceed the threshold M. In Section 4, we propose and analyze
five different measures to quantify the impact caused by a possible threshold exceedance. Final considerations are presented in
Section 5.

2 An epidemiological SIR model and its parametric solution

The main idea behind SIR models is to consider that a population N is divided into three disjoint categories or compartments:
susceptible individuals, infected individuals, and removed individuals (recovered or deceased individuals), denoted by S, I , and
R respectively, so N = S + I + R.
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We consider the following SIR model,
dS
dt

= −β S I

dI
dt

= β S I − γI

dR
dt

= γ I .

(1)

The positive real numbers β and γ are interpreted as the infection rate and recovery rate, respectively. Note that, by adding
equations in (1), we can obtain

dN
dt

=
dS
dt

+
dI
dt

+
dR
dt

= 0.

Thus, we can consider N (t) = S (t) + I (t) + R(t) constant for all t. Taking the standard definition of the basic reproduction
number in the classical SIR model, given by R0 =

βN
γ , we can rewrite (1) as

dS
dt

= −
γ R0 S I

N
dI
dt

=
γ R0 S I

N
− γI

dR
dt

= γ I .

(2)

The basic reproduction number R0 has a fundamental role in the description of the equilibria stability in the classical SIR
model. Within the limitations of the model,R0 can be interpreted as the number of new cases that one case generates, on average,
within a completely susceptible population (Heffernan et al., 2005; Martcheva, 2015). Additional considerations regarding the
interpretation of R0 can be found in Delamater et al. (2019); Li et al. (2011).

There is not an exact analytical solution of the SIR model (2) in terms of the parameter t. However, it is possible to obtain a
parametric solution in terms of a new parameter u. Following the results obtained in Harko et al. (2014), a parametric solution
for the model (2) can be written as

S (u) = x0u

I (u) = N
R0

ln u − x0u +N

R(u) = − N
R0

ln u,

(3)

where u = e−
R0
N R, and x0 = S (0)e

R0
N R(0) .

Figure 3: Parameter equations (3) describe a curve (red) that contains the solution curve of the epidemiological SIR model
(black), but traversed in the opposite direction.
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The parametric equations in (3) describe a curve in R3, which, for some specific values of u, corresponds precisely to the
solution curve of (2) (for details see Harko et al., 2014). In particular, to properly describe the evolution of the removed popu-
lation R, the parameter u should vary in such a way that R goes from R(0) to R∞ B limt→∞ R(t). Thus, the third equation
in (3) implies that in that case, u varies from u0 = e−

R0
N R(0) to u∞ = e−

R0
N R∞ .

Note that uwas defined as a decreasing function ofR and also thatR is an increasing function of t. Therefore, the parameter
u must decrease to properly describe the solution curve of (2) in the time-forward direction. In fact, as 0 ≤ R(0) ≤ R∞ ≤ N ,
we have that e−R0 ≤ u∞ ≤ u0 ≤ 1. If the parameter u varies from 0 to ∞, Equations (3) describe a curve inR3 that contains the
solution of the model (1), but the curve is traversed in the opposite direction (Figure 3).

3 Controlling the maximum of the infected population
Let M be a positive constant such that M < N . We will consider M as a threshold that, ideally, must not be exceeded by
the active infected population. In this section, we aim to obtain conditions to ensure that Imax ≤ M, where Imax denotes the
maximum value of the infected population I .

From now on, we consider that S (0) > 0 and I (0) > 0; so, I (t) ≠ 0 for all t > 0. The following lemma establishes a
sufficient condition for the basic reproduction number R0 to ensure that Imax ≤ M.

Lemma 1. If R0 ≤ N
S (0) and I (0) ≤ M, or if N

S (0) < R0 ≤ N
N−M , then Imax ≤ M.

Proof. Note first that, because we are considering I ≠ 0, the second equation in (2) implies that, dI
dt = 0 if, and only if, S = N

R0
;

I is increasing if, and only if, S > N
R0

; and I is decreasing if, and only if, S < N
R0

. Note also, from the first and third equations
in (2), that S and R are non-increasing and non-decreasing functions of t, respectively.

Hence, ifR0 ≤ N
S (0) and I (0) ≤ M, then S (0) ≤ N

R0
and I is not increasing for all t ≥ 0. Therefore, Imax is already attained

at I (0); so, Imax = I (0) ≤ M.
On the other hand, if N

S (0) < R0, then I is increasing until it reaches its maximum value Imax = I (t∗), for some t∗ satisfying
dI
dt (t

∗) = 0, which implies,

S (t∗) = N
R0

. (4)

From the fact that R(t∗) ≥ 0, and N = S (t) + I (t) + R(t), it follows that

Imax = I (t∗) ≤ R(t∗) + I (t∗) = N − S (t∗) = N − N
R0

= N
(
1 − 1

R0

)
. (5)

Finally, note that if R0 ≤ N
N−M , then N

(
1 − 1

R0

)
≤ M and, thus, from (5), we can conclude that if R0 ≤ N

N−M , then

Imax ≤ M. □

Lemma 1 provides an easily verifiable condition on R0 to ensure that the threshold M will not be exceeded. However, since
it is only a sufficient condition based on upper bounds on Imax, it can be a very restrictive condition on R0. Furthermore, it
does not provide information on the value of Imax if the condition is not satisfied. In the following result, we use the parametric
solution (3) to obtain an expression for Imax that will allow us to establish a more robust condition on R0 to control Imax.

Proposition 1. Imax ≤ N
R0

(
ln

(
N

R0S (0)

)
− 1

)
− R(0) +N and, if R0 ≥ N

S (0) , the equality holds.

Proof. Let us consider the parametric equations (3). Recall that, when u varies on the interval (0,∞), equations (3) describe
an extended curve which contains the solution curve of (1), but is traversed in the opposite direction. This part of the curve
corresponds to u varying on the interval [u∞, u0] ⊂ (0,∞). Note, however, that the maximum value of I on this curve does
not depend on the specific parametrization, nor on the curve orientation.

From the second equation in (3), we have that

dI
du

=
N
R0u

− x0 and
d2I
du2

= − N
R0u2

< 0. (6)

Thus, I is a strictly concave function on u with a unique global maximum attained in u∗ = N
R0x0 . Furthermore, if u < N

R0x0 ,
then I is strictly increasing, and if u > N

R0x0 , I is strictly decreasing.
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The maximum possible value for I along the extended curve, therefore, is given by

I (u∗) = N
R0

ln
(

N
R0x0

)
− x0N
R0x0

+N

=
N
R0

(
ln

(
N

R0x0

)
− 1

)
+N

=
N
R0

(
ln

(
N

R0S (0)

)
− 1

)
− R(0) +N ,

where the last equality is obtained by using that x0 = S (0)e
R0
N R(0) . Note that I (u∗) is not necessarily equal to the maximum

number of infected Imax, but we must, indeed, have that, Imax ≤ I (u∗). The equality will hold if, and only if, the global maximum
of I is attained in the part of the curve corresponding to the epidemic, i.e. if, and only if, u∗ ∈ [u∞, u0]. If R0 ≥ N

S (0) , then
N

R0S (0) ≤ 1; thus,

u∗ =
N

R0x0
=

N
R0S (0)

e−
R0
N R(0) ≤ e−

R0
N R(0) = u0.

If u∗ < u∞ ≤ u0, then u∞ and u0 would also be on the decreasing side of I ; so I (u∞) ≥ I (u0). The last inequality would
be absurd, since I (u0) = I (0) > 0 and I (u∞) = limt→∞ I (t) which, in the case of the SIR model (1), is equal to zero. Hence,
we conclude that if R0 ≥ N

S (0) , then u∗ ∈ [u∞, u0] and, therefore, in this case, Imax and I (u∗) must coincide, i.e.,

Imax =
N
R0

(
ln

(
N

R0x0

)
− 1

)
+N =

N
R0

(
ln

(
N

R0S (0)

)
− 1

)
− R(0) +N . (7)

□

Equality (7) can also be obtained without using the parametric equations (3), by solving a separable ODE obtained by di-
viding the first equation in (1) by the second one (see, for example, Weiss, 2013, Section 2.2.7).

Equality (7) can be used to easily check if Imax will or will not exceed M, for some given values of the reproduction number,
initial conditions, and M. Furthermore, Equality (7) can be used to estimate conditions on the parameters or on the initial
conditions, implying that Imax ≤ M. In particular, the next proposition uses Equality (7) and the Lambert W function to
determine a necessary and sufficient condition on R0 to ensure that Imax ≤ M.

Proposition 2. Consider that R0 ≥ N
S (0) and I (0) < M < S (0) + I (0). Then Imax ≤ M if, and only if,

R0 ≤ N
W−1

(
M−N+R(0)

S (0)e

)
M −N + R(0) , (8)

where W−1 denotes the lower branch of the Lambert W function.

Proof. The conditionR0 ≥ N
S (0) allows us to consider the Equality (7). The inequality I (0) < M < S (0)+ I (0) means thatM

has not been attained at initial conditions, and also thatM is not impossible to be attained, because S (0)+ I (0) is the maximum
number of the population that has not yet been removed and may eventually become infected at some point.

From the second equality in (7), note that

dImax

dR0
= − N

R 2
0

(
ln

(
N

R0S (0)

)
− 1

)
− N
R0

(
R0S (0)

N
N

R 2
0 S (0)

)
=

N
R 2

0
ln

(
R0S (0)

N

)
. (9)

So, Imax is an increasing function on R0 when R0 > N
S (0) . Additionally, note from (7) that, if R0 → ∞, then we have that

Imax → N −R(0) = S (0) + I (0). So, the condition I (0) < M < S (0) + I (0) implies that M is, in fact, an attainable value for
Imax, i.e. there exists a value R ∗

0 > N
S (0) such that Imax = Imax (R ∗

0 ) = M. Using the Lambert W function (See Appendix A for
details), it is possible to determine this value. From Equation (7), we have that

Imax = M ⇒ N
R ∗

0

(
ln

(
N

R ∗
0 S (0)

)
− 1

)
= M + R(0) −N

⇒ N
R ∗

0 S (0) ln
(

N
R ∗

0 S (0)

)
=

N
R ∗

0 S (0) +
M + R(0) −N

S (0)
⇒ v ln v = v + b,
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with v = N
R ∗

0 S (0) and b = M+R(0)−N
S (0) . According to Lemma 4 in A, the solutions to the equation v ln v = v + b have the form

v =
b

W (be−1) .

Since be−1+1 = b = M+R(0)−N
S (0) , the condition I (0) < M < S (0) + I (0) implies that −1 < b < 0. Hence, Lemma 4 also implies

that v ln v = v + b has two solutions, each one corresponding to a specific branch of the function W . One of these solutions is
precisely given by v = N

R ∗
0 S (0) ≤ 1; so, we must have for a certain branch of W that

b
W (be−1) ≤ 1 (10)

for b in (−1, 0). This is only possible for the lower branch of the Lambert W function and, thus, we conclude that b
W−1 (be−1) =

N
R ∗

0 S (0) . Therefore,

R ∗
0 = N

W−1
(
M−N+R(0)

S (0)e

)
M −N + R(0) . (11)

Finally, as we have established that Imax is an increasing function on R0 and we have that Imax attains M at R ∗
0 , then the

condition Imax ≤ M will be satisfied if, and only if, R0 ≤ R ∗
0 , and the desired result follows from Equation (11). □

Example 1. To illustrate the result obtained in Proposition 2, consider a scenario with the total population N = 100, the
recovery rate γ = 1/3, the initial conditions S (0) = 99, I (0) = 1, R(0) = 0, and a threshold M equal to 10, corresponding to
10% of the total population. In this case, using equation (11), we obtain a critical value R ∗

0 ≈ 1.7. The corresponding curve
of infected cases is pictured in orange in Figure 4. Note that, as expected, the maximum value of active infected cases, Imax,
corresponds exactly to M.

In Figure 4, the curves of infected cases corresponding to a basic reproduction number 10% higher (purple line), and 10%
lower (green) than the critical value R ∗

0 are also pictured. As expected, the values of Imax are higher and lower than M, respec-
tively.

Figure 4: Curves of infected individuals for different values of R0, illustrating different scenarios concerning the threshold M
(red dashed line). As in Example 1, the total population considered is N = 100 and M is 10% of N (M = 10), resulting in the
critical reproduction number R ∗

0 ≈ 1.7.

An additional consequence of Propositions 1 and 2 is that, when there is an estimation of the value of Imax, one can use
Equation (11) to obtain a posteriori estimation for R0. This is established explicitly in the following corollary and will be used
in the numerical example in Subsection 4.2.2.
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Corollary 1. If I (0) > 0 and dI
dt (0) > 0, then R0 can be written in terms of Imax as

R0 = N
W−1

(
Imax−N+R(0)

S (0)e

)
Imax −N + R(0) . (12)

Proof. If I (0) > 0 and dI
dt (0) > 0, then the second equation in (2) implies that R0 ≥ N

S (0) and the result follow from Equa-
tion (11), considering M = Imax. □

4 Quantifying the impact of threshold exceedance
In this section, we propose and compare different measures to quantify the impact produce by exceeding the thresholdM. Using
Propositions 1 and 2, we have a way to quantify how far from M the value Imax would be and how far R0 is from its maximum
acceptable value. Those are precisely the motivations behind quantities Q1 and Q2, defined by:

Q1 = R0 −R ∗
0 = R0 −N

W−1
(
M−N+R(0)

S (0)e

)
M −N + R(0) , (13)

and
Q2 = Imax −M =

N
R0

(
ln

(
N

R0S (0)

)
− 1

)
− R(0) +N −M. (14)

Figures 5(a) and 5(b) illustrate quantitiesQ1 andQ2. The blue line in Figure 5(a) corresponds to the value of Imax calculated
for different values of R0. Note that, at R ∗

0 , we have that Imax = M. The value of Q1 for a specific R0 is the difference
between R0 and R ∗

0 . The blue line in Figure 5(b) corresponds to the values of I (t) and the maximum peak of this curve, Imax,
is highlighted by the black dashed line. The value of Q2 is the difference between Imax and M.

The quantities Q1 and Q2 only consider the impact on the epidemic peak, without explicitly considering the total impact of
exceeding the threshold. To take this into account, we can aggregate all threshold exceedances, using some form of integration.
For example, we can integrate the difference I − M precisely over the time interval where I is greater than M. This is the
motivation behind quantity Q3, defined as

Q3 =
∫ tf

ti
(I (t) −M) dt, (15)

where ti ≤ tf are values of t such that I (ti) = M = I (tf ) and M < Imax, i.e. [ti , tf ] is the interval where I is greater than M.
Quantity Q3 is illustrated in Figure 5(c).

The quantity Q3 is a natural expression for impact quantification, however, note that there is not an analytical expression
for I in terms of t, neither are there closed forms for the limits of integration ti and tf . Therefore, Q3 can only be estimated
numerically.

A similar integration-based measure can be considered, related to the parametric equations in (3), with an analogous inter-
pretation, but expressed in terms of the parameter u. This is the motivation behind the quantity Q4, defined as follows:

Q4 =
∫ ui

uf
(I (u) −M) du =

∫ ui

uf

(
N
R0

ln u − x0u +N −M
)
du =

(
N
R0

(u ln u − u) − x0u2

2
+ (N −M)u

) ����ui
uf
, (16)

where uf ≤ ui are such that I (uf ) = M = I (ui). These values uf and ui are the endpoints of the interval where I (u) exceeds
M, so, they are analogous, in the parameter u, to ti and tf . Unlike quantity Q3, there exists a closed form for Q4 and, as we will
see in Subsection 4.1, there also exists closed form expressions for uf and ui in terms of the Lambert W function. Quantity Q4
is illustrated in Figure 5(d). Note that, in Figure 5(d), I is varying according to the parameter u, while in Figure 5(c), I is varying
according to t.

While Q3 and Q4 are defined in similar ways as definite integrals of a real function, their values are not necessarily equal,
since they are based on different parametrizations of the epidemic curve. However, it is possible to define an integration-based
measure that does not depend on parametrization, using the following line integral on the three-dimensional extended curve:

Q5 =
∫
C
f · ds,

where C corresponds to the part of the epidemic curve where I is greater or equal to M and f is the scalar field defined by
f = I −M. The quantity Q5 resembles Q3 and Q4 and can be considered a natural expression to quantify the global threshold
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(a) (b)

(c) (d)

Figure 5: Representation of quantities Q1, Q2, Q3, and Q4, for the parameters N = 100, γ = 1/3, R0 = 2.5, S (0) = N − 1,
I (0) = 1, R(0) = 0, and M equal to 10% of N (M = 10). The threshold M is represented by the red dashed line.

Figure 6: Line Integral Q5 as a measure for threshold exceedance quantification.
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exceedance, when considering the three-dimensional epidemic curve and the area of the surface determined by the curve and the
plane I = M (see Figure 6).

The quantity Q5 does not depend on the parametrization or the orientation of C because it is defined as the line integral of
a scalar field on a smooth curve. Hence, to calculate Q5, we could use any parametrization. In particular, we have that

Q5 =
∫
C
f · ds =

∫ tf

ti
(I (t) −M) |r′t (t) | dt =

∫ ui

uf
(I (u) −M) |r′u (u) | du, (17)

where ti , tf , uf , and ui are defined as before and rt and ru are parametrizations of the epidemiological curve in terms of t and u,
respectively. As previously discussed, there are no closed expressions for I (t), ti , or tf ; nor are there any for rt . However, note
that, for the parameter u, the expressions for ru (u) and I (u) are given precisely by Equations (3). Thus, Q5 can be expressed as

Q5 =
∫ ui

uf
(I (u) −M) |r′u (u) | du =

∫ ui

uf

(
N
R0

ln u − x0u +N −M
) √︄

2
(
x20 +

N
R0u

(
N
R0u

− x0
))

du. (18)

In subsection 4.2.1, we will use numerical examples to compare the quantities introduced above and to illustrate the influence
of variations on parameters R0 and M. Before that, however, in the next subsection, we show that uf and ui can be expressed
in closed form, in terms of the Lambert W function.

4.1 Estimation of ui and uf
The effective computation of quantities Q4 in (16) and Q5 in (18) requires the determination of the values of ui and uf , such
that I (uf ) = M = I (ui). In terms of Equations (3), we seek solutions u ∈ (0,∞), for the equation

I (u) = N
R0

ln u − x0u +N = M. (19)

We have already established that the maximum possible value for I is given by N
R0

(
ln

(
N

R0x0

)
− 1

)
+ N ; so, Equations (19)

cannot have solutions, if M is larger than this quantity. The following proposition, which uses Lemma 3 in Appendix A, can
be used to reach the same conclusion; but, most importantly, it will allow us to obtain a closed form for the solutions of (19),
and will allow us to express uf and ui , in terms of the Lambert W function.
Proposition 3. Let M be a positive real number, where M ≤ N and consider S (0) > 0.

• If M < N
R0

(
ln

(
N

R0x0

)
− 1

)
+ N , then I attains the value M in two values of u, considering the two branches of W in the

expression

u =
W

(
−x0R0

N e
R0
N (M−N )

)
−x0R0

N

=
W

(
−R0

N S (0)e
R0
N (R(0)+M−N )

)
−R0

N S (0)e
R0
N R(0)

. (20)

• If N
R0

(
ln

(
N

R0x0

)
− 1

)
+N < M, then I never reaches the value M.

Proof. From Equation (19), we have that

N
R0

ln u − x0u +N = M ⇒ ln u =
R0

N
x0u +

R0

N
(M −N ) ;

so, the expression (20) for the solutions u, when they exist, can be obtained from Lemma 3, for a = R0x0
N and b = R0

N (M −N ).
Let us analyze if, under the conditions considered, Equation (20) has two solutions. The condition for the existence of two

solutions is given in Lemma 3 by 0 < aeb+1 < 1, which, in this case, is equivalent to

0 <
R0x0
N

e
R0
N (M−N )+1 < 1.

The left side inequality is immediately satisfied because x0 > 0, when S (0) > 0. The right side is equivalent to
R0x0
N

e
R0
N (M−N )+1 < 1 ⇒ e

R0
N (M−N )+1 <

N
R0x0

⇒
R0

N
(M −N ) + 1 < ln

(
N

R0x0

)
⇒ M <

N
R0

(
ln

(
N

R0x0

)
− 1

)
+N ,
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which is precisely our hypothesis. By the same reasoning, the inequality N
R0

(
ln

(
N

R0x0

)
− 1

)
+N < M is equivalent to 1 < aeb+1,

which, by Lemma 3, implies that Equation (19) has no solutions. □

4.2 Numerical examples
In this section, we illustrate some of the results obtained in two ways. First, we analyze different characteristics of the quantities
Qi , numerically, based on synthetic data. Then, we present an illustration of the estimation of quantity Q4 and a posteriori
estimation of R0, based on COVID-19 data from the city of Curitiba, Brazil.

The values of Q1 and Q2 were calculated using Equation (13) and (14), respectively. The value of Q4 was calculated using
the right side of (16), where the integration extremes, ui and uf , were obtained by Equation (20). The values of Q3 and Q5 were
calculated using numerical approximations. For Q3, we use Equation (15) and a numerical method of integration. The values
of I (t) were computed via a numerical solution of the differential equations in model (2) and the extremes of the integration
interval were obtained by a numerical search among the discretized values of I (t). For Q5, we use the right side of Equation (18)
and also a numerical integration method. The extremes of the integration interval, however, were calculated by Equation (20).
Note that, in this case, there is no need for a numerical solution for the ODE system. All numerical calculations were performed
in Python, using lambertw and odeint from the module SciPy, and trapz from NumPy.

4.2.1 Comparison between the quantities Qi

Although the quantities presented in this paper all measure the impact of exceeding the thresholdM, each one does it differently.
To illustrate these differences, we present some numerical comparisons between the quantities. Note that, the basic reproduction
number R0 and the threshold M, play fundamental roles in the dynamics and, consequently, in the values of quantities Qi .

Figure 7 illustrates this by showing some heat maps of the intensity for each quantity Qi and different values of R0 and M.
At first glance, the quantities behave similarly with respect to variations in M and R0. As expected, we see low intensity for
small R0 and large M, and a gradual increase in intensity as R0 increases or M decreases. Maximum intensity is attained for the
highest values of R0 and the lowest values of M. Note, however, the difference in scale for each quantity.

A closer look at each quantity allows us to observe slightly different behaviors. Note, for example, that even for a low fixed
M (such as M = 3.75), Q3 has a very high intensity even at low R0 values, while Q5 will only increase intensity significantly, for
higher values of R0.

Figure 8 shows the quantities and their derivatives as functions of R0. Except for Q1, which has a constant derivative, all
other quantities have a derivative going to zero for large values of R0. This can be interpreted as a sensitivity loss for variations
in R0, when R0 increases. This sensitivity loss evolves in different ways for each quantity.

All quantities have different value scales, hence, to compare them simultaneously over an interval, we can normalize their
values with respect to the maximum value attained. To illustrate this kind of comparison, Figure 9(a) presents the normalized
values for all quantities and Figure 9(b) shows the logarithmic derivatives of the quantities with respect to R0, that is, the quo-
tient between dQi

dR0
and Qi , for i = 1, 2, 3, 4 or 5. In this case, from Figure 9(a), we can establish that Q3 approaches its maximum

value comparatively faster than the other quantities, and, from Figure 9(b), that Q5 is slightly more sensitive for small values of
R0 than the other quantities.

4.2.2 Estimation of R0 and Q4 in the city of Curitiba, Brazil

In this section we consider real data related to the pandemic of COVID-19 from Curitiba, the state capital of Paraná, Brazil.
It is worth noting that the estimates presented here are only intended to illustrate the potential use of some of the results

presented in this article, and do not aim to provide a precise depiction of R0 for such a complex scenario as the COVID-19
pandemic. The results must also be considered within the limitations of the simple SIR model.

We consider the data made available by the Municipal Health Department of Curitiba (SMS, 2021), for the period from
February to April 2021. This period corresponds to one of the COVID-19 waves in Curitiba. The Imax considered was the
maximum number of active cases registered in this period (Imax = 14271). The total population was considered asN = 1948626,
which corresponds to the estimate of Curitiba’s population in 2020 (IBGE, 2021). The initial values of S, I , and R were:
S (0) = 1791069, I (0) = 5956, and R(0) = 151601. This value of I (0) corresponds to the number of active cases at the
beginning of the period in question. The value of R(0) was obtained by adding the cumulative number of registered cases
and the number of vaccinated people at the beginning of the period, and then subtracting the value of I (0). Finally, S (0) was
obtained by N − I (0) − R(0).

Using this data and Equation (12), we obtain the a posteriori estimation for the corresponding basic reproduction number
as R0 = 1.2019. Although this estimate of R0 requires prior knowledge of Imax , it can be relevant to study the variation of
R0 in different locations, or even in the same place, but for different periods to compare different waves. This could help policy
makers, to adjust preventive measures when facing new outbreaks of COVID-19 or other infectious diseases.
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(a) Q1 (b) Q2

(c) Q3 (d) Q4

(e) Q5

Figure 7: Heat maps for quantities Qi , i = 1, . . . , 5, for different values of R0 and M, with N = 100, γ = 1/3, S (0) = N − 1,
I (0) = 1, R(0) = 0, M ∈ [2, 12] and R0 ∈ [1.8, 3].
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(a) Q1 (b) Q2

(c) Q3 (d) Q4

(e) Q5

Figure 8: In solid lines, values of the quantities Q1 (blue), Q2 (orange), Q3 (green), Q4 (red), and Q5 (purple) and in dashed
lines, their derivatives with respect to R0, with N = 100, γ = 1/3, S (0) = N − 1, I (0) = 1, R(0) = 0, M = 0.1 · N and
R0 ∈ [R ∗

0 ,R0], where R ∗
0 is given by Equation (11) and R0 = 10.
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(a) Normalized Quantities (b) Logarithmic derivatives

Figure 9: Comparison between quantities. Figure (a) shows the normalized quantities as a function of R0. Figure (b) shows
logarithmic derivatives of the quantities, with respect to R0. The parameters considered were N = 100, γ = 1/3, S (0) = N − 1,
I (0) = 1, R(0) = 0, M = 0.1 · N , R0 ∈ [R ∗

0 , 10] in (a) and R0 ∈ [R ∗
0 , 5] in (b), where R ∗

0 ≈ 1.7 was obtained by
Equation (11).

During the period under consideration, the health care capacity of Curitiba reached its maximum occupancy. To illustrate
the quantification of the negative impact produced, we will use the quantity Q4 given by Equation (16). It will be necessary to
estimate the value of the health care capacity threshold.

According to the Municipal Health Department of Curitiba (SMS, 2021), the number of exclusive beds for COVID-19 in
this period was around 525. In addition, 8.8 percent of the cases registered in Curitiba required hospitalization. So, we consider
that M = 525/0.088 ≈ 5966. Thus, using Equation (16), we obtain Q4 = 924.1690. Figure 10(a) shows the curve of active
infected individuals as a function of u (blue line), the threshold M (in red), and the quantity Q4 for the parameters considered
above.

Finally, we wanted to analyze the impact on Q4 caused by potential reductions in R0 and how far the city was from flatten-
ing its infection curve. We considered different values of R0 and calculated the corresponding Q4 values, obtaining the graph
pictured in Figure 10(b). The red dot denotes the values of R0 and Q4 we estimated previously for Curitiba, and the green dot
corresponds to the zero impact situation obtained when R ∗

0 = 1.0916 given by Equation (11). In this case, we see that to effec-
tively flatten the curve, i.e. to achieve zero impact, a reduction of 0.1859 in the value of R0 would have been necessary. Note,
however, that even a reduction of 0.06 in R0, would have flattened the curve enough to decrease the impact measured by Q4 by
approximately 80%.

5 Final Comments
Inspired by the idea of flattening the curve of active infected cases in an epidemic outbreak, we considered an epidemiological
SIR model and a positive threshold M. We established necessary and sufficient conditions on the basic reproduction number
R0, to ensure that the infected population does not exceedM (Proposition 2). This was achieved by using a parametric solution
for the SIR model in terms of a parameter u (Equations (3)) and the properties of the Lambert W function.

We also considered the problem of quantifying the impact caused by a possible threshold exceedance, and proposed five
alternatives. Quantities Q1 (Equation (13)) and Q2 (Equation (14)), measure the negative impact based only on considerations
related to the epidemic peak. Quantities Q3 to Q5 quantify the global impact, by using some form of aggregation of threshold
exceedances. This is done by integration with respect to the parameter t, in the case of Q3 (Equation (15)), with respect to the
parameter u, in the case of Q4 (Equation (16)), and by a line integral over the 3-dimensional epidemic curve in the case of Q5
(Equation (18)).

The results obtained are limited by the simplicity of the SIR epidemic model. To extend the ideas and results obtained to
more complex models, some requirements would have to be satisfied. For example, to consider the SEIR model, it would be
necessary to have a reparametrized solution, analogous to Equations (3) for the SIR model.

If we consider the effective reproduction number defined as Re (t) = R0
S (t)
N , some of the results can be expressed in terms
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(a) Q4 for the city of Curitiba (b) Variation of Q4 as a function of R0

Figure 10: Estimation of Q4 for data from the city of Curitiba.

ofRe (0) immediately. For example, Proposition (1) would become Imax ≤ S
Re (0)

(
ln

(
1

Re (0)

)
− 1

)
−R(0)+N with the equality,

when Re (0) ≥ 1. However, it would also be interesting to consider the effective reproductive number Re as an independent
variable affecting the disease’s dynamics. In fact, note that model (2) could be rewritten in terms ofRe. This would be a particular
case of an epidemic model with variable infection rates or with infection rates depending on other variables (Greenhalgh and
Das, 1995; Greenhalgh and Day, 2017; Liu and Stechlinski, 2012; Báez-Sánchez and Bobko, 2020). In this kind of situation,
the curve I may not be concave or have several local optima (see Báez-Sánchez and Bobko, 2020). Hence, to obtain a result as
Proposition 1, it would be necessary to consider a different approach. These issues may be considered in future studies.

A Lambert W function
The Lambert W function is a multi-valued function corresponding to the inverse relation of the function f (x) = xex . Hence,
W (x) gives the solutions u of the equation ueu = x i.e. W (x) satisfies that

W (x)eW (x) = x.

For the real case, the Lambert W function is defined only for − 1
e ≤ x. This and other related properties are summarized

in the following lemma, given here without proof. For proof details and additional properties of the Lambert W function (see
Corless et al., 1996).

Lemma 2. For x ∈ R, the Lambert W function on x is defined only for − 1
e ≤ x. If − 1

e < x < 0, then the equation yey = x has
two solutions and, therefore, W (x) has two possible values denoted by W−1 (x) and W0 (x). If 0 ≤ x, the equation has a unique
solution denoted by y = W0 (x). At the point x = − 1

e , the equation has a unique solution W
(
− 1

e
)
= −1.

The Lambert W function can be used to solve equations involving natural logarithms as described in the following results.

Lemma 3. Let a and b, be real numbers with a ≠ 0. Consider the equation

ln u = au + b, (21)

for u > 0. If there exist solutions, they can be expressed in terms of the Lambert W function as

u =
W (−aeb)

−a . (22)

Equation (21) has no solutions, if 1 < aeb+1; it has two solutions, if 0 < aeb+1 < 1; and it has a unique solution, if aeb+1 = 1 or
aeb < 0.

Proof. From Equation (21), we have that

ln u = au + b ⇒ u = ebeau ⇒ −aue−au = −aeb ⇒ −au = W (−aeb) ⇒ u =
W (−aeb)

−a .
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Note that, according to Lemma 2, W (−aeb) is not defined, if −aeb < − 1
e , which is equivalent to 1 < aeb+1.This prove the

first affirmation and the rest of the conditions follow in a similar way from Lemma 2. □

Lemma 4. Let a and b, be real numbers with b ≠ 0. Consider the equation

v ln v = av + b, (23)

for v > 0. If there exist solutions, they can be expressed in terms of the Lambert W function as

v =
b

W (be−a) . (24)

The equation (21) has no solutions, if be−a+1 < −1; it has two solutions, if −1 < be−a+1 < 0; and it has a unique solution, if
be−a+1 = −1 or 0 < be−a.

Proof. From Equation (23), we have that

v ln v = av + b ⇒ −(− ln v) = a +
b
v

⇒ ln
(
1
v

)
= −a − b

v
⇒ ln u = −bu − a,

with u = 1
v . The desired result follows from Lemma 3. □
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