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ABSTRACT
The COVID-19 outbreak of 2020 has required many governments to develop
mathematical-statistical models of the outbreak for policy and planning purposes.
This work provides a tutorial on building a compartmental model using Susceptibles,
Exposed, Infected, Recovered and Deaths (SEIRD) status through time. A Bayesian
Framework is utilized to perform both parameter estimation and predictions. This
model uses interventions to quantify the impact of various government attempts to
slow the spread of the virus. Predictions are also made to determine when the peak
Active Infections will occur.
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1 Introduction
Coronavirus Disease 2019 (COVID-19) is a severe pandemic a�ecting the whole world with a fast spreading regime, requiring
to perform strict precautions to keep it under control (Wu et al., 2020; Rezabakhsh et. al., 2020). As there is no cure and target
treatment yet, establishing those precautions become inevitable. These limitations (Giuliani et al., 2020) can be listed as social
distancing, mask wearing and hand-washing, closure of businesses and schools and travel prohibitions (Chinazzi et al., 2020).

Corona Virus is a new human Betacoronavirus that uses densely glycosylated spike protein to penetrate host cells. The
COVID-19 belongs to the same family classi�cation with Nidovirales, viruses that use a nested set of mRNAs to replicate and
it further falls under the subfamily of alpha, beta, gamma and delta Co-Vis. The virus that causes COVID-19 belongs to the
Betacoronavirus 2B lineage and has a close relationship with SARS species. It is a novel virus since the monoclonal antibodies
do not exhibit a high degree of binding to SARS-CoV-2. Replication of the viral RNA occurs when RNA polymerase binds
and re-attaches to multiple locations (McIntosh, 2020; Fisher and Heyman, 2020).

Cases of COVID-19 started in December 2019 when a strange condition was reported in Wuhan, China. This virus has a
global mortality rate of 3.4%, which makes it more severe in relation to �u. The elderly who have other pre-existing illnesses are
succumbing more to the COVID-19. People with only mild symptoms recover within 3 to 7 days, while those with conditions
such as pneumonia or severe diseases take weeks to recover. The recovery percentage of patients, for example, in China stands at
51%. The recovery percentage rate of COVID-19 is expected to hit 90% (WHO, 2020).

The virus has spread fromChina to 196 other countries and territories across the globe. FromWuhan, Hubei province, the
virus spread toMainland China, Thailand, Japan, South Korea, Vietnam, Singapore, Italy, Iran, and other countries. The State
ofQatar was one of the countries that were a�ected by theCOVID-19 spreading, and the �rst infected case was reported on 29th
of February 2020 and it could be considered the 2nd highest in the Arab World with the number of con�rmed cases 28,272 as
of May 14, 2020.

For e�ectively specifying such securitymeasures, it is essential to have a real-timemonitoring systemof the infection, recovery
and death rates. We develop, implement and deploy a data-driven forecastingmodel for use by stakeholders in the State of Qatar
to dealwith theCOVID-19 pandemic. Themodelwill focus on infected, deaths and recovered as those are the only data available
at this time.

This document is organized in the following manner. In Section 2 the Susceptible, Exposed, Infected, Recovered, Death
(SEIRD)model that is employed is de�ned. Next, Section 3 introduces the data available and gives description. Section 4 shows
how interventions are incorporated into themodel. The Bayesian inferencemodel speci�cation is given in Section 5. Summaries
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of the parameter estimation is shown in Section 6. Predictive performance is provided in Section 7. And �nally, a discussion is
found in Section 8.

2 The SEIRD Model
Let S (t) be the number of people Susceptible at time t,E(t) be the number of people Exposed at time t, I (t) be the total number
of Infected at time t, R(t) be the cumulative number of recovered at time t and D(t) be the cumulative number of Deaths at
time t. This can be modeled with the following system of ordinary di�erential equations:

dS (t)
dt

= −αS (t)E(t)

dE(t)
dt

= αS (t)E(t) − βE(t) − γE(t)

dI (t)
dt

= βE(t) − γI (t) − ηI (t)

dR(t)
dt

= γI (t)

dD(t)
dt

= ηI (t)

(1)

where α is the transmission rate (per day×individual2) from Susceptible to Exposed, β is the rate (per day) at which Exposed
become Infected, γ is the rate (per day) atwhich Infected become recovered and η is themortality rate (per day) for those Infected.
Notice that, this model formulation makes several key assumptions:

1. Immigration, emigration, natural mortality and births are negligible over the time frame and hence are not in the model.

2. Once a person is in the Infected group, they are quarantined and hence they do not mix with the Susceptible population.

3. The Recovered and Deaths compartments are for those who �rst are infected.

4. Those who are exposed and never become infected(sick) recover at the same rate γ as those who become sick and recover.

Traditional analysis would include a steady state analysis, however, in this case the dynamics of the short term is of interest.
Hence, this work does not address any steady state or equilibrium concerns. This work is concernedwith �tting themodel given
in (1) to theCOVID-19 data concerning the State ofQatar during the 2020 outbreak and using themodel for forecasting several
possible scenarios.

3 Data
The Johns Hopkins University (JHU) COVID-19 Github site (https://github.com/CSSEGISandData/COVID-19) in-
cludes for every country for each day the cumulative number of con�rmed infections, cumulative number of recovered and the
cumulative number of deaths for each day starting 22 January 2020. The data for Qatar was obtained. Notice that in model (1)
the Recovered and Death states are cumulative as once one enters the compartment their is no exit. However, the Infected
compartment has transitions from Exposed and to Recovered and Deaths. Hence the data provided for con�rmed infections is
cumulative and included both Recovered and Deaths and will need to be removed from this compartment’s data. Let CI (t) be
the Con�rmed Infections as reported by JHU at time t and let Infected I (t) be de�ned as

I (t) = CI (t) − R(t) −D(t).

For clarity the term “Active Infections” will be used to denote the derived variable, I (t), versus the Cumulative Infected, CI (t),
provided in the data.

Figure 1 shows the plots of the Active Infections, Recovered andDeaths data for Qatar for the days since 29 February 2020.
Notice that the Active Infections are very low until around day 12 when there is large jump due to increased testing. The Active
Infections then seems to plateau for until day 30, after which there is extreme growth in Active Infections. There seems to be
a similar pattern for the Recovered with a delay showing the time of infection before recovery. The plot for Deaths shows no
deaths until day 30 and then a steady increase in Deaths for the remaining days.

The State of Qatar, prepared an excellent �exible plan for risk management, grounded on national risk assessment, taking
account of the global risk assessment done byWHO, focuses on reinforce capacities to reduce or eliminate the health risks from

https://github.com/CSSEGISandData/COVID-19
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(a) (b) (c)

Figure 1: Plots ofNumber ofActive Infections (a), CumulativeNumber ofRecovered (b) andCumulativeNumber ofDeaths
(c) for the State of Qatar for the days since 29 February 2020 until 1 May 2020.

COVID-19. Embed complete emergency risk management strategy in the health sector. Furthermore, Enabling and promot-
ing multi-sectoral linkage and integration across the whole-of-government and the whole-of-society (DOH-UK, 2020; DOH-
Australia, 2020; WHO, 2020).

OnMarch 9, 2020 (day 10), Qatar announced a closure of all universities and schools. It placed a travel ban on 15 countries:
Bangladesh, China, Egypt, India, Iran, Iraq, Italy, Lebanon, Nepal, Pakistan, the Philippines, South Korea, SriLanka, Syria,
and Thailand. OnMarch 14, 2020 (day 15), Qatar expanded its travel ban to include three new countries: Germany, Spain and
France (Hamad Medical Corporation, 2020; MPH-Qatar, 2019). The Ministry of Municipal and Environment on March 19,
2020 (day 19), closed all parks and public beaches and put public sector employees at 80% ofwork fromhome to curb the spread
of coronavirus. The Council of Ministers on April 1, 2020 (day 31) further required that private sector employees must con-
duct 80% of their work from home. OnApril 8, 2020 (day 39), theMinistry of Commerce and Industry decided to temporarily
close all restaurants, cafes, food outlets, and food trucks at the main public era. On April 23, 2020 (day 54) the holy month
of Ramadan began where people were not allowed the typical social mingling the month typically provides. In fact the govern-
ment highly encouraged extremely limited social mingling. A detailed list of government interventions are provided by Hamad
Medical Corporation (2020) andMPH-Qatar (2019).

These interventions taken by the government change the dynamics of the system and hence need to be incorporated into
the model. The next section details howwe introduce interventions both from the government and interventions guided by the
data. While the model interventions correspond to government policy changes, one cannot assume that any impact is solely due
to those policies as other lurking variables may contribute to the impact.

4 Interventions
In Figure 1, one can see the jump at day 12 and a plateau until day 30. The model needs to be able to handle interventions
made by the Government of the State of Qatar. Themain parameter that policy can in�uence is α, the rate of transmission from
Susceptible to Exposed. One way to implement this the use of indicator functionsWk (t) de�ned as

Wk (t) =
{
1 if t > tk
0 otherwise

where tk is the time where the kth intervention is taken and index k = 1, 2, . . . ,K . For each intervention there needs to be a
change to the value of α, denoted αk, that captures the impact of the intervention. Let the vectorW (t) =

(
1,W1 (t),W2 (t),

. . . ,WK (t)
)T be the vector of the values of eachWk (t) at time t. Let α = (α0, α1, . . . , αK )T . This formulation gives the following

transitions rates between S (t) and E(t):

α(t) =



α0 if 0 < t < t1
α0 + α1 if t1 < t < t2
α0 + α1 + α2 if t2 < t < t3

...
...

α0 + α1 + · · · + αK if tK < t
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which will require the following constraints due to the fact that α(t) > 0 for all t:

α0 > 0
α0 + α1 > 0

α0 + α1 + α2 > 0
...

α0 + α1 + · · · + αK > 0.

LetA be the set de�ned by the constraints above.
In addition to changes in infection rates α, impulse functions can be used to model dramatic one time shifts in transitions

between states. A Dirac delta function de�ned by

δ(x) = 0, if x ≠ 0

which satis�es
∫ ∞
−∞ δ(x) dx = 1 (Dirac, 1958). This can be integrated in the model to capture spikes in the number of cases.

In our case the State of Qatar data shows exhibits this type of behavior at day 12 where one can clearly see a large jump in the
number of infections. This is incorporated into the model presented by a Dirac delta function, δ(t − τ), in transition rate
between Exposed and Infected, which is coupled with a coe�cient to βA to capture the impact of the jump.

5 Bayesian Analysis
Due to the complexity of the model the Bayesian inferential framework is chosen. Recall, Bayes formula is given by (Bayes and
Price, 1763):

π(θ | D) = π(θ)L(D | θ)∫
Θ
π(θ)L(D | θ)dθ

where π(θ | D) is the posterior probability distribution for the parameters θ given the dataD, π(θ) is the prior distribution of
θ and L(D | θ) is the likelihood of the data given θ.

In order to specify the likelihood of the model in equation (1) the model modi�ed to model themean abundance in each
compartment and is given by

dλS (t)
dt

= −W (t)TαλS (t)λE (t)

dλE (t)
dt

= W (t)TαλS (t)λE (t) − βλE (t) − γλE (t) − βAλE (t)δ(t − τ)

dλI (t)
dt

= βλE (t) + βAλE (t)δ(t − τ) − γλI (t) − ηλI (t)

dλR (t)
dt

= γλI (t)

dλD (t)
dt

= ηλI (t)

(2)

whereλS (t), λE (t), λI (t), λR (t) andλD (t) are themeans of S (t),E(t), I (t),R(t) andD(t), respectively and the parameters have
the same de�nition as provided in the system given in equation (1). Since there is no data for S (t) and E(t), these compartments
will be latent variables and will not directly factor into the likelihood. The likelihood for I (t),R(t) andD(t) are given by

I (t) ∼ Poisson(λI (t))
R(t) ∼ Poisson(λR (t))
D(t) ∼ Poisson(λD (t)).

(3)

To specify the prior distributions for α, βA, β, γ and η one must incorporate the following constraints α > 0, β > 0, γ > 0
and η > 0. Hence the following prior distributions are set:

α ∼ MVN (a1, σ2I)C (A)
βA ∼ Exp(1)
β ∼ Exp(1)
γ ∼ Exp(1)
η ∼ Exp(1)
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whereC (A) is an indicator function takes the value 1 if α ∈ A. This serves to truncate the normal distribution in order to keep
α in the feasible range of values.

The likelihood and prior distributions speci�cations lead to the following posterior distribution when a = 1 and σ2 = 1:

π(α, βA, β, γ, η | D) ∝ π(α)π(β)π(γ)π(η)L(D | α, βA, β, γ, η)

= C (A)e− 1
2 (α−1)

T (α−1)−βA−β−γ−η

×
T∏
t=1

λI (t)I (t)λR (t)R(t)λD (t)D(t) e−λI (t)−λR (t)−λD (t)

I (t)!R(t)!D(t)! (4)

The posterior distribution does not lend to any analytic solution, hence Markov chain Monte Carlo (MCMC) techniques will
be used to sample from the posterior distribution (Gelman et al., 2013). Speci�cally Metropolis-Hastings sampler is used to
obtain samples from the posterior distribution (Gilks et al., 1996; Albert, 2009). To tune the sampler, a series of short chains
were generated and analyzed for convergence and adequate acceptance rates. These initial short chains were discarded as “burn-
in” samples. The tuned sampler was used to generate 5,000 samples from π(α, βA, β, γ, η | D) and trace plots were visually
examined for convergence and deemed to be acceptable. All inferences will be made from these 5,000 samples. The model and
sampling algorithm is custom programmed in the R statistical programming language version 3.6.3. The computation takes
approximately 290 seconds using a AMDA10-9700 3.50GHz processor with 16GB of RAM to obtain 5,000 samples from the
posterior distribution. For more on statistical inference see Wackerly et al. (2008); Casella and Berger (2002); Berger (1985).

6 Results
To apply the model the following initial conditions are speci�ed: S (0) = 2, 782, 000, E(0) = 3, I (0) = 1, R(0) = 0 and
D(0) = 0. Here S (0) is the current population of the State of Qatar, I (0), R(0) andD(0) are obtained directly from the data.
The choice of E(0) was used as it a minimal value that would allow the disease to spread but not so large as to make the spread
rapid. Several values of E(0) were explored and the value of 3 was found to have the best �t. Furthermore, model interventions
were placed at days t1 = 12, t2 = 19, t3 = 36, t4 = 40 and t5 = 59 with an Dirac delta impulse at time τ = 12.

Table 1 shows themeans, standard deviations and the 0.025%, 0.5% and 0.975%quantiles for themodel parameters based on
the 5,000 samples from the posterior distribution. Notice that, α0 = 2.33 × 10−7 and α1 = −2.33 × 10−7 (within rounding) are
very close in magnitude with di�erent signs indicating that the �rst intervention almost eliminated transmission. Similarly one
can see that the second and third interventions α2 = 1.70×10−7 and α3 = −1.70×10−7 essentially are of the samemagnitudewith
di�erent signs which when added resulting in a very low transmission rate. However, α4 = 6.39 × 10−8 is a moderate increase
with another moderate decrease in α5 = −5.28 × 10−8 which still leaves a �nal transmission rate of

∑K
k=0 αk ≈ 1.12 × 10−8.

Of particular note is the mean mortality rate η = 0.00014 ≈ 1/7142 which means that about 1 in 7,142 people perish from
the disease each day, which is quite low. Also note that the mean infection (con�rmed) rate is β = 0.07887 ≈ 1/12.67 which
corresponds to about 1 in 12.67 exposed people become con�rmed each day. The quantile intervals provide a 95% credible
interval for the parameters and can be used to obtain a range of reasonable parameter values. For example for the parameter β
the interval is (0.07319, 0.08381) meaning that the probability that β is between (0.07319, 0.08381) is 0.95. This can be used
to create an interval for the risk interpretations as between 1/0.07319 ≈ 13.66 and 1/0.03298 ≈ 11.93 Exposed people are
con�rmed as infected each day. This also gives insight into how many people who may be in the population who are Exposed
and may be infectious but do not yet exhibit symptoms. Recall, γ corresponds to the rate at which people recover from the
disease which is 0.00977. This corresponds to 1/0.00977 ≈ 1/102.35 which corresponds to 1 in 102.35 people recover from the
disease each day. This value may be arti�cially low due to delays in reporting.

While many of the parameters do not lend well to the traditional H0 : θ = 0 hypothesis testing as they must be positive.
We can conduct simple hypothesis tests on the α parameters to look for signi�cant changes due to interventions using contrasts.
Speci�cally the sequential contrasts of α1 − α0, α2 − α1, α3 − α2, α4 − α3 and α5 − α4. These contrasts quantify the changes that
in transmission rate from Susceptible to Exposed due to the interventions and are what policymakers want to see. Furthermore,
they want a statistical test on whether or not the intervention performed in a statistically signi�cant manner. This can be done
by simply subtracting the MCMC samples to generate the contrast of interest. Using these subtracted samples one can look
at the mean, standard deviation, quantiles and the proportion of samples above 0, P (> 0). Table 2 shows these quantities for
the contrasts listed above. Notice that the intervention at day 12 reduced the transmission rate by approximately 4.66 × 10−7
which is considerable and the proportion of samples above 0 was 0.000 indicating a statistically signi�cant change due to the
intervention. The intervention taken at day 19, α2 − α1, actually increased the transmission rate, where the intervention taken
at day 36, α3 − α2, then reduced the transmission rate. Similarly the other two interventions increased and then decreased the
transmission rates, respectively. Furthermore, all interventions be deemed statistically signi�cant since P (> 0) is either 0.000 or
1.000 indicating signi�cance.
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Table 1: Mean, StandardDeviation and (Q0.025,Q0.5,Q0.975) for α0, α1, α2, α3, α4, βA, β, γ and η. Based on 5,000 samples from
the posterior distribution

Parameter Mean Std Dev. (Q0.025,Q0.5,Q0.975)
α0 2.33 × 10−7 9.30 × 10−10

(
2.31 × 10−7, 2.33 × 10−7, 2.34 × 10−7

)
α1 (day 12) −2.33 × 10−7 1.03 × 10−9

(
−2.34 × 10−7,−2.33 × 10−7 − 2.31 × 10−7

)
α2 (day 19) 1.70 × 10−7 1.01 × 10−9

(
1.69 × 10−7, 1.70 × 10−7, 1.72 × 10−7

)
α3 (day 36) −1.70 × 10−7 1.11 × 10−9

(
−1.72 × 10−7,−1.70 × 10−7,−1.69 × 10−7

)
α4 (day 40) 6.39 × 10−8 1.68 × 10−9

(
6.08 × 10−8, 6.42 × 10−8, 6.64 × 10−8

)
α5 (day 59) −5.28 × 10−8 8.24 × 10−9

(
−6.47 × 10−8,−5.39 × 10−8,−3.32 × 10−8

)
βA (day 12) 1.45777 0.00841 (1.44649, 1.45598, 1.47108)
β 0.07887 0.00351 (0.07319, 0.07966, 0.08381)
γ 0.00977 8.71 × 10−5 (0.00962, 0.00977, 0.00995)
η 0.00014 9.26 × 10−6 (0.00012, 0.00014, 0.00016)

Table 2: Mean, Standard Deviation, (Q0.025,Q0.5,Q0.975) and proportion of samples larger than zero P (> 0) for sequential
contrasts across α. Based on 5,000 samples from the posterior distribution

Contrast Mean Std Dev. (Q0.025,Q0.5,Q0.975) P (> 0)
α1 − α0 −4.66 × 10−7 1.95 × 10−10

(
−4.69 × 10−7,−4.66 × 10−7,−4.63 × 10−7

)
0.000

α2 − α1 4.03 × 10−7 4.25 × 10−10
(
4.02 × 10−7, 4.03 × 10−7, 4.04 × 10−7

)
1.000

α3 − α2 −3.41 × 10−7 2.12 × 10−9
(
−3.45 × 10−7,−3.40 × 10−7,−3.38 × 10−7

)
0.000

α4 − α3 2.34 × 10−7 7.62 × 10−10
(
2.33 × 10−7, 2.34 × 10−7, 2.36 × 10−7

)
1.000

α5 − α4 −1.16 × 10−8 9.15 × 10−9
(
−1.30 × 10−7,−1.18 × 10−7,−9.44 × 10−8

)
0.000

The model formulation also allows for the individual transmission rates to be computed by simply summing up the αk
through to the desired time point. Table 3 gives the mean, standard deviation and (Q0.025,Q0.5,Q0.975) for the transmission rate
of Exposed to Infected across each time interval. This is done by simply add the correspondingMCMC samples. This is another
perspective on how the transmission rate changes across the time frame. Notice that all of the transmission rates are positive
which is required by the model speci�cation. Also notice that the mean transmission rates vary in orders of magnitude from
2.40 × 10−10 to 2.33 × 10−7. One interesting point that should be made is the highest transmission rate is at the beginning and
the lowest transmission rate is at the end. This is evidence that the interventions taken by the Qatari government has ultimately
reduced the transmission rate.

To assess the �t of the model the posterior predictive distribution was used and is given by

π
(
Inew (t),Rnew (t),Dnew (t) | D

)
=
∫

L
(
Inew (t),Rnew (t),Dnew (t) | α, βA, β, γ, η

)
× π(α, βA, β, γ, η | D)dαdβAdβdγdη.

Using the samples 5,000 samples from the posterior distribution 5,000 samples were generated from the posterior predictive
distribution. At each time t the median, 0.025 and 0.975 quantiles were obtained to form a posterior predictive interval.

Figure 2 shows the model �ts for Active Infections, Recovered andDeaths with posterior predictive bands. Notice that, the
model does quite well at �tting the dynamics of the Active Infections including the jump at day 12 and captures the plateau and
the exponential growth after the plateau as well. The Recovered model �ts well as does the Deaths data. To assess the explained

Table 3: Mean, StandardDeviation and (Q0.025,Q0.5,Q0.975) of transmission rate of Exposed to Infected for the speci�ed time
intervals.

Time Sum Mean Std Dev. (Q0.025,Q0.5,Q0.975)
0 ≤ t < 12 α0 2.33 × 10−7 9.30 × 10−10

(
2.31 × 10−7, 2.33 × 10−7, 2.34 × 10−7

)
12 ≤ t < 24

∑1
k=0 αk 2.40 × 10−10 1.82 × 10−10

(
8.16 × 10−12, 2.01 × 10−10, 6.61 × 10−10

)
24 ≤ t < 28

∑2
k=0 αk 1.71 × 10−7 1.09 × 10−9

(
1.69 × 10−7, 1.70 × 10−7, 1.72 × 10−7

)
28 ≤ t < 40

∑3
k=0 αk 1.43 × 10−10 1.46 × 10−10

(
3.07 × 10−12, 1.00 × 10−10, 5.70 × 10−10

)
40 ≤ t < 59

∑4
k=0 αk 6.41 × 10−8 1.69 × 10−9

(
6.10 × 10−8, 6.43 × 10−8, 6.66 × 10−8

)
59 ≤ t

∑5
k=0 αk 1.12 × 10−8 7.58 × 10−9

(
5.17 × 10−10, 1.04 × 10−8, 2.88 × 10−8

)
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(a) (b) (c)

Figure 2: Plots of Total Active Infections (a), Cumulative Recovered (b) and Cumulative Deaths (c) for the State of Qatar for
the days since 29 February 2020 until 1 May 2020 with posterior predictive bands. Posterior predictive bands are based on the
0.025 and 0.975 Quantiles from 5,000 samples from the posterior predictive distribution.

(a) (b) (c)

Figure 3: Plots of Total Active Infections (a), Cumulative Recovered (b) and Cumulative Deaths (c) for Qatar for the days
since 29 February 2020 until 1 May 2020 with posterior predictive bands with actual values from 2 May 2020 until 10 May
2020 denoted with (+). Vertical line separates the training data from the predictions. Posterior predictive bands are based on
the 0.025 and 0.975 Quantiles from 5,000 samples from the posterior predictive distribution.

variance a pseudo-R2 was formed using themedian from the posterior predictive distribution at each time as the point estimates.
This, resulted in a pseudo-R2 of 0.998which indicates the �ttedmodel explains approximately 99.8% of the variance in the data.
Based on this the model is deemed to �t well. It should be noted that standard data splitting procedures for model validation are
di�cult in this scenario as removing values from the systemmay cause unstable behavior.

7 Predictive Performance
To assess the model performance predictive performance is utilized with days from 2May 2020 and 10May 2020 used as a test
set. Using the samples from the posterior distribution the posterior predictive distribution was computed for each day of the
test set and 95% posterior predictive intervals were created using the 2.5% and 97.5% quantiles. The test data is then compared
to the posterior predictive intervals for each of the endpoints.

Figure 3 shows the data, predictive bands and the actual values for Active Infections (a), Recovered (b) and Deaths (c).
Training data is presented by (o) and test set data is presented by (+) and the vertical line separates the training time frame
from the prediction time frame. Notice that, the Active Infections (panel a) performs incredibly well with all test set points
in the predictive interval. The Recovered (panel b) performs equally well. Deaths (panel c) performs the worst as the model
consistently over predicts the true number of deaths. Overall the model does reasonably well at predicting the test set.

Another view of predictive performance is to examine pseudo-predictive-R2 which compares the predicted values with the
actual values for the test set. This calculation leads to a pseudo-predictive-R2 ≈ 0.923 which is lower than the pseudo-R2
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Figure 4: Plot ofTotalNew Infections forQatar for the days since 29February 2020until 1May2020with posterior predictive
bandswith actual values from2May2020until 10May 2020denotedwith (+). Posterior predictive point estimates are based on
themedian and bands are based on the 0.025 and 0.975Quantiles from5,000 samples from the posterior predictive distribution
at each time point.

associated with the �t of the model to the data in the training set but is still very high. Of course several other measures of
predictive performance exist however this is the easiest to understand as it measures the amount of variation explained by the
predictions across the test set.

8 Discussion
This work has demonstrated how to build a SEIRD model for the COVID-19 outbreak in the State of Qatar, include inter-
ventions, estimate model parameters and generate posterior predictive intervals using a Bayesian framework. Furthermore, the
model is able to treat the Susceptible and Exposed compartment as latent variables, as no data is observed about them other
than approximate initial values. The model �ts the data quite well with a pseudo-R2 ≈ 0.998 and predicts reasonably well with
pseudo-predictive-R2 ≈ 0.923. One can also note that in the model de�nition, no immigration, emigration, natural births and
natural mortality were not included and based on the high psuedo-R2 would have a negligible e�ect on �t.

The modeling paradigm is quite �exible for modeling the COVID-19 data as it easily incorporates interventions into the
system and can quantify the impact of the intervention. Furthermore, using simple di�erences the model can be used to predict
new infections as well. Figure 4 shows the plots of the new infections with predictive bands based on 2.5% and 97.5% based on
5,000 samples from the posterior prediction distribution at each time point. Notice that the model does well at capturing the
jump at day 12 and the bands capture most of the data. It is interesting how the dynamics change as the public sector is moved
to working from home with an increase in infection rate compared to when

Another use of the model may be for long term predictions. While this is extrapolation, it does provide policy makers a tool
for planning, provided nothing changes, i.e., no interventions are taken. It also allows policymakers to see the possible long term
e�ects of their decisions. Figure 5 shows the long-term predictions of the model if no other interventions are made past 1 May
2020. Notice that the predictions do eventually decrease across the future time frame. Notice the width of the predictive bands
for times farther in the future. This re�ects the uncertainty associated with extrapolating into the future. However, one item
that we can calculate from this is a 95% predictive interval for the peak infection time. By simply recording the maximum value
for each of the predictive distribution trajectories from the MCMC samples one can obtain a distribution of the time for the
maximum. In this case this gives the 95% predictive interval for themaximum to be (78,162). Thismeans that the peak infection



LETTERS IN BIOMATHEMATICS 27

Figure 5: Plot of Long-term New Infections for Qatar for the days since 29 February 2020 until 28 July 2020 with posterior
predictive bands. Training data from 29 February 2020 to 1 May 2020. Posterior predictive bands are based on the 0.025 and
0.975Quantiles from5,000 samples from theposterior predictive distribution. Darkdashed vertical lines give the 95%predictive
interval for the maximum active infections.

time will be between day 78 (17 May 2020) and day 162 (9 August 2020) of the outbreak given that no other interventions or
process changes occur. Fig. 5 also shows this interval given by the dark dashed vertical lines. The width of the interval quanti�es
the uncertainty about where the maximum active infections will occur. Since the width of the interval is 84 days, this indicates
that there is a large amount of uncertainty on when the number of active infections will begin to decline.

To address possible sensitivity issues to the initial Exposed value E(0) = 3. By looking at the data values of E(t) To study
this the model was run again with values E(0) = 5, 10, 15 and 25 and the model pseudo-R2 was calculated for each. All runs
were under the exact same prior distribution speci�cations and using the same MCMC procedures. For E(0) = 5 the model
produces a pseudo-R2 = 0.999, withE(0) = 10 produces a pseudo-R2 = 0.990, usingE(0) = 15 a pseudo-R2 = 0.967 is found
and �nally, with E(0) = 25 a pseudo-R2 = 0.865 is given. This suggests that the model is not sensitive to low values of E(0)
but values that are too large produce a poorer and poorer performance especially at the beginning time frame.

Future work could be to add an overdispersion parameter into the model to allow for the more accurate capture of un-
certainty. Furthermore, one can perform simulation studies to better understand how the model may perform under various
scenarios. Feature selectionmethods could be employed to select where the interventions should be placed as well as other forms
of interventions could be included in the model. Another possibility to address any deviations from the standard model a semi-
parametric technique could be studied as well.
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