
LETTERS IN BIOMATHEMATICS
An International Journal

EDUCATION ARTICLE OPEN ACCESS

Modeling and analysis of the firefly luciferase reaction and a
G-protein coupled receptor signaling pathway with ordinary
differential equations increases self confidence in
mathematical cell biology for novice graduate students

Renee Dale,a Naohiro Kato,b Bill Wischusenb

aDonald Danforth Plant Science Center, St. Louis, MO; bDepartment of Biology, Louisiana State University,
Baton Rouge, LA

ABSTRACT
The push for mathematics and computation in biology is greater than ever before.
However, perceptions among biology students on the difficulty of mathematics and
programming are a barrier to their implementation. A teaching module introducing
quantitative skills to biology students is needed. We implemented modeling of
firefly luciferase and G-protein coupled receptor signaling with ordinary differential
equations in a course for novice graduate students. We assessed whether the course
helped the students increase self confidence in application of mathematics in biology.
Two concept inventories tracked learning gains in both general and cell biology
knowledge. Pre- and post-semester surveys quantified changes in student confidence
and their opinions of the usefulness of these techniques in cell biology. We found
that the modeling and analysis activities appeared to improve self confidence in
and appreciation of quantitative mathematical biology techniques. We describe our
assessment methods to determine the suitability of our module.
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1 Introduction
Mathematics and quantitative skills are increasingly critical in the �eld of biology. Whether a student is looking to work in public
health, education, or basic research, understanding mathematical models will be required. In particular, systems cell biology uses
comprehensive and quantitative experimental methods that are interpreted using mathematical and statistical models (Mast
et al., 2014).

Vision and Change calls for more quantitative training in the biological sciences (Woodin et al., 2010). However, the social
perception of mathematics being for ’geniuses’ serves to enhance the struggles of disadvantaged groups (Lamb, 2018, 2015; Leslie
et al., 2015). Educators experiencing math anxiety are not always con�dent in their ability to teach students the quantitative
skills necessary for their career (Chen et al., 2018). When biology students are exposed to new methods involving mathematics,
they often ’freak out’ (Chen et al., 2018). This is partially due to social perceptions of mathematics and to belief that new
methods are inherently more di�cult (Leslie et al., 2015; Lamb, 2018, 2015). Research has shown that when students engage in
studying mathematics and technology, their attitudes improve (Uitto et al., 2006; Ravenel et al., 2014; Afari et al., 2012). These
experiences have also led to increased e�cacy in their studies and engagement when learning mathematics in context of their
existing interests (Afari et al., 2013; Eaton and Highlander, 2017). However, post-secondary education is often not up to the
challenge (Chen et al., 2018). Math class requirements for STEM undergraduates are a signi�cant factor in their low retention
in STEM (Chen, 2013; Belser et al., 2018). Mathematical anxiety or gender bias present in teachers may prevent them from
demonstrating the utility or importance of mathematics to their students before they choose their majors in college.

Given the issues involved in obtaining the skills required to study systems cell biology, the ability to understand and quantify
the e�ectiveness of an exercise or course is increasingly important. In the near future, the ultimate goal of a cell biology course will
be for students to be able to model a cellular system. Due to the multidisciplinary nature of systems cell biology, this necessitates
exposure to several knowledge bases: basic mathematics and programming skills in addition to speci�cs about the cellular system
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being modeled. In some cases, the focus of such a class may be understanding non-linear kinetics of cellular systems. In our
case, we wanted the students to understand the transferable concepts involved in signaling pathways, such as feedback loops,
by modeling them with ordinary di�erential equations. This motivated the development of a teaching module that introduced
modeling of cellular systems with ordinary di�erential equations to our students who are interested in mathematical cell biology,
yet lacking the self con�dence required to self-study. To measure student learning gains in the course, we developed a general
biology concept inventory and two concept inventories on domain-speci�c knowledge (here, meaning the two biological systems
modeled in class). We also measured student attitudinal changes toward mathematics and quantitative biology using a survey.
In addition, we collected open-ended survey data to compare student comments with the overall improvement in the four areas.
We �nd that our module allowed students to develop self con�dence in their quantitative skills and their ability to utilize them in
their future research. However, our sample size is very small. We hope to provide a starting point for future work on developing
similar modules, including issues that we experienced during our work.

2 Methods

2.1 Study Population
The study population was a group of 7 students enrolled in graduate programs at Louisiana State University. Four students
were from the department of biological sciences, and three students were from the department of engineering. The students
took a course entitled mathematical modeling in cell biology, which was held in the fall semester of 2017. The students from
the department of biological sciences had little to no prior experience with programming in MATLAB, while this subject is
commonly introduced in undergraduate engineering curricula. The students from the school of engineering had little to no prior
knowledge of the G-protein couple receptor signaling pathway, while this is commonly introduced in undergraduate biology
curricula. All students had little or no prior experience with developing mathematical models. All students had taken at least
one calculus course at the undergraduate level previously. This was determined by self-report on the part of the students. We
received Institutional Review Board (IRB) approval for this study (E10547).

2.2 Course Content
The objective of the course was for students to understand how to abstract a biological system to a conceptual model, describe
this model using ordinary di�erential equations, write code with MATLAB to simulate this model, and gain a basic understand-
ing of how to interpret model components, such as parameters. A total of 27 sessions including midterm and �nal examinations
were held over the course of a semester, with each session lasting around 80 minutes. First we introduced students to MATLAB
programming (2 sessions). We then discussed biological concepts using the textbooks Molecular Cell biology and Molecular
Biology of The Cell (Lodish et al., 2016; Alberts et al., 2002). We focused on four main biological systems: 1) protein-protein
interactions, 2) enzyme reactions, 3) gene expression, and 4) signaling pathways, a total of 8 sessions. We then described how
these biological concepts could be described with ordinary di�erential equations using a textbook Mathematical Modeling in
Systems Biology: An Introduction by Brian P. Ingalls over a total of 4 sessions (Ingalls, 2013).

Students were tasked with two modeling case studies: 1) conversion of Michaelis-Menten kinetics to ordinary di�erential
equations, and 2) G-protein coupled signaling pathway. These case studies spanned 6 sessions. Finally, the students model for
their own self-selected system as the �nal project over the remaining 5 sessions of the course. PowerPoint �les used for the two
case studies were provided as Supplemental materials.

2.2.1 Modeling Michaelis-Menten kinetics of the enzyme firefly luciferase

Our learning goals for the students in this module included conversion of a conceptual model to a system of ordinary di�erential
equations. They were to complete this in MATLAB. This was the �rst time the students would be constructing a mathematical
model, although some students had prior experience with MATLAB or Python. Because all students in the course had learned
the basics of enzymatic reactions in high school and throughout introductory biology courses in college, we thought it would be
a good system for the introduction of modeling regardless of their majors. It is also important to note that modeling Michaelis-
Menten kinetics using a system of ordinary di�erential equations is a classical application of mathematics to biological systems.
The equations describe how the enzyme, substrate, and product dynamics change over time. For an ordinary biology major stu-
dent, however,KM, the Michaelis constant, is the important parameter to understand the function of an enzyme quantitatively.
The Michaelis constant can be obtained by simplifying the system by assuming that the amount of enzyme-substrate complex
does not change signi�cantly over time, so that the production rate depends on the amount of enzyme and substrate (quasi-
steady-state approximation). The conceptional model of the Michaelis-Menten kinetics is described in Fig. 1. Here E stands
for enzyme, S for substrate, E · S for the enzyme-substrate complex, and P for product. In this model, enzyme and substrate
reversibly bind to form the enzyme-substrate complex before the enzyme catalytically releases the product. By assuming that
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Figure 1: System of enzyme kinetics. E is the enzyme, S is the substrate, ES is the enzyme-substrate complex, and P is the
product. Parameter names are shown near the arrows, which show the directionality of their e�ect. kon is the substrate binding
rate (Molar s−1), ko� the substrate unbinding rate (s−1), and kcat the product formation rate (s−1).

the concentration of E · S is not changed after burst formation of E · S, we can obtain a mathematical model known as the
Michaelis-Menten equation.

dP
dt

=
kcat · E0 · S
KM + S

(1)

This model considers the concentration of unbound product P, total enzyme E0, and substrate S. The catalytic rate kcat is a
constant (s−1) that describes the catalytic release of P after catalysis occurs in the E · S complex. KM represents the Michaelis
constant, representing the amount of substrate required to reach half-maximum reaction velocity. The catalytic rate and total
enzyme, kcat · E0, is often alternatively expressed as Vmax.

In the course, we used the non-steady state approximation modeling approach and consider both binding and unbinding
of the substrate. This is because we emphasized the importance to translate a diagrammatic model into ordinary di�erential
equations. The resulting system contains 4 components and 3 parameters (Fig. 1). Substrate binding is typically in terms of
molar s−1, while unbinding is s−1, and amount of each component is molar.

This case study provides students with a simple system that is relatively intuitive. Product cannot be formed without the
enzyme �rst binding the substrate. The amount of enzyme binding the substrate is described by the trade-o� between the
binding and unbinding rate, as well as the amount of substrate available. When the substrate is present in excess, the amount
of enzyme-substrate complex reaches an equilibrium, and the Michaelis-Menten quasi-steady state model is equivalent to the
non-steady state model. Simulations of the ordinal di�erential equation models illustrate these e�ects, helping the student
understand quasi-steady state approximation, as well as how they might think more critically about their conceptual models of
the enzymatic reaction.

To model this system, students are instructed to use the states and parameters provided in Fig. 1 and describe as ordinary dif-
ferential equations. Ordinary di�erential equations lend themselves well to the study of biological phenomena, as they describe
how something changes over time. Many biological processes are described by how much they change over time.

change in X
time

==
dX
dt

(2)

Applying this logic to the enzyme reaction, students must identify how each of the 4 states is changing over time. Students
are told that the amount of free enzyme decreases as it binds to the substrate. From the equation in Fig. 1,

E + S → E · S (3)

Mathematically, this translates to
dE
dt

= −kon · E · S (4)

The binding event is dependent on the binding rate, as well as the amount of free enzyme and free substrate. In addition,
the amount of free enzyme is increased when the enzyme-substrate complex breaks apart, or when catalysis occurs. Adding these
two events into the model, the equation describing the change in free enzyme over time becomes

dE
dt

= −kon · E · S + ko� · ES + kcat · ES (5)

Applying these methods to the remaining states in the system, the students derive the following system of equations de-
scribing this system (Eqn. 6 to 9). Note that since enzyme is not used up when it catalyzes a reaction, when catalysis occurs to
the enzyme-substrate complex, the enzyme involved in that catalysis is returned to the pool of free enzyme at the same rate that
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Figure 2: The dynamics of �re�y luciferase show a short peak in light very quickly, followed by a slow decay as substrate is ex-
hausted. The di�erent parameters of luciferase a�ect di�erent portions of the dynamics, illustrating their e�ects in an enzymatic
system. Here, the model simulation (blue) has had its parameters altered to �t the data (grey).

catalysis occurs.

dE
dt

= −kon · E · S + ko� · ES + kcat · ES (6)

dS
dt

= −kon · E · S + ko� · ES (7)

dES
dt

= kon · E · S − ko� · ES − kcat · ES (8)

dP
dt

= kcat · ES (9)

Following this exercise, students were provided with real enzymatic data we collected using the �re�y luciferase assay in the
previously published research article (Dale et al., 2016). Fire�y luciferase is an enzyme that oxidizes luciferin, the substrate to
form oxyluciferin, which releases a photon. Since the radiative decay of excited oxyluciferin to the ground state is much faster
(nanoseconds) than the catalytic reactions (sub-seconds), the production rate of luciferase can be determined by the photons
emitted from oxyluciferin. This illustrates the dynamics of product formation when the light production is measured. In other
words, the reaction model of �re�y luciferase can be built mathematically and con�rmed experimentally without the quasi-
steady-state approximation. To this end, we added one more equation that describe light (λ) emission from oxyluciferin.

dλ
dt

= γ · kcat · ES − λ (10)

Here γ represents a parameter for the light emission measured as relative luminescence units (RLU) recorded by luminometer, a
light detector. The exact RLU value is unique to the equipment used. Students were tasked with modeling the �re�y luciferase
reaction and modifying the model to describe the dynamics in the data. They were also introduced to parameter estimation
techniques to assist them in this task. In Fig. 2, we present the curve �t of the �re�y luciferase reaction. This exercise allows us to
illustrate how helpful mathematical models can be, in determining if your current understanding of the system is su�cient to
explain the data you see. Also it is important to emphasize that “all models are wrong, but some are useful,” as famously stated
by statistician George Box. We feel this is best illustrated by seeing �rsthand the subjectivity involved in attempting to produce
a model that can reproduce the observed dynamics with a simulation.
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Figure 3: G-protein signaling pathway. G is free G-protein trimer, Ga is Gα bound to GTP, Gd is Gα bound to GDP, Gbg
is Gβγ subunit complex, R is the receptor, and L is the ligand. Parameter names are shown near the arrows, which show the
directionality of their e�ect. The ligand binding rate is indicated by kRL, kRLr the ligand unbinding rate, kGa the rate of Ga
dissociating and binding GTP, kGd is the rate of dephosphorylation of the GTP bound to Ga, kGr is the dissociation rate and
kG the association rate of the G-protein trimer.

2.2.2 Modeling the G-protein coupled receptor signaling pathway

G-protein coupled receptors are membrane-bound proteins involved in many biological signaling processes. These receptors
bind signaling ligands produced by other cells, and the signals produce changes inside the cell. When the receptor is unbound,
the G-protein Gα (here, Ga) subunit is bound to GDP, and is associated with the Gγ (Gg) and Gβ (Gb) subunits, forming
a trimer. After the ligand reversibly binds the receptor, the Ga subunit reversibly binds to GTP and propagates the signal by
dephosphorylating the GTP to form GDP (represented as Gd). The Gb and the Gg complexes reversibly separate. This system
contains 7 components and 6 parameters (Fig. 3). We chose this system to model because G-protein coupled receptors are
described in all major textbooks of cell biology for college students. We used the model and analysis that were previously described
in the textbook, Mathematical Modeling in Systems Biology: An Introduction by Brian P. Ingalls (Ingalls, 2013).

The system of equations describing this system is shown in equations 11 to 16. Eqn. 11 describes the change in receptor-
ligand complex over time, as the ligand binds the receptor reversibly. Eqn. 12 describes the change in free G-protein over time,
as it binds the receptor-ligand complex and GDP. Eqn. 13 describes the change in Ga complex, which increases when G-protein
binds the receptor-ligand complex and decreases when GTP is dephosphorylated. Again, binding is molar s−1, unbinding s−1,
and dephosphorylation is in terms of s−1. The model components are expressed in terms of molarity.

dRL
dt

= kRL · L · R − kRLr · RL (11)

dG
dt

= −kGa · G · RL + kG · Gd · Gbg − kGr · G (12)

dGa
dt

= kGa · RL · G − kGd · Ga (13)

R = RTotal − RL (14)
Gd = GTotal − Ga − G (15)
Gbg = Gd + Ga (16)

This system also contains some algebraic terms, since we consider the total number of existing receptors (Eqn. 14), Ga-GDP
(Eqn. 15) and Gbg (Eqn. 16) complexes in the system. Algebraic terms can be useful when logical constraints exist on the system.
For example, if we have some total receptor existing in the cell, then we can determine free receptor from the receptor-ligand
dynamics algebraically.

This system is not as intuitive as enzyme kinetics, and it illustrates the bene�t of mathematical modeling well. There are
more complex transitions, with multiple things occurring at a single step (for example, dephosphorlyation). In addition, some
components not explicitly modeled, such as GTP and GDP. Although the students might be able to predict the e�ect of changes
in a component or parameter on the system accurately, they likely would not be able to predict the magnitude of the e�ect
without a mathematical model. In Fig. 4, we present the e�ect of reducing the dephosphorylation rate of Gα by 0.11 units per
second to zero that was described in the textbook and discussed in the course (Ingalls, 2013).

The mathematical model forces the students to understand the system quantitatively, which helps them identify a portion
that is not involved in the dynamic response of the cell or whose function is wrongly assumed, given the quantitative relationships
between the system components. For example, if we have data showing that a lack of dephosphorylation does not cause a 10-fold
increase in the amount of Gα bound to GTP, maybe another dephosphorylation enzyme is present, or another component is
providing negative feedback on Gα. Both of these hypotheses can be rapidly and quantitatively tested by modifying the model.
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Figure 4: The mathematical model illustrates the e�ect of the dephosphorylation rate on Gα bound to GTP (blue) and the
receptor-ligand complex (orange). Dynamic response is described. At time t = 100 sec, 1 nM of ligand is introduced. This signal
is removed at time t = 700 sec, causing the response to decay. (Figure left) the dephosphorylation rate kgd1 is set at 0.11 units
per second (assuming wild type cell). (Figure right) the rate sets at zero (assuming the Gα protein is mutated in the cell).

2.3 Opinion and confidence survey
We developed a 5-point Likert scale survey to capture attitudes of the students on topics related to mathematical modeling. We
sought to measure student con�dence changes in four areas: technical skill, synthesis, domain knowledge, and in general.

• “Technical skill”: These questions ask students about their con�dence in performing quantitative techniques such as
programming and math. The survey contained 5 Technical skill questions.

• “Synthesis”: These questions ask students about their con�dence and opinion on the value of systems-thinking. In this
case, we consider systems-thinking to be synthesis between biological and quantitative understanding. The survey con-
tained 5 Synthesis questions.

• “Domain knowledge”: These questions ask students about their con�dence as an experimental biologist. The survey
contained 2 Domain questions.

• “General”: con�dence to perform basic functions of a scientist - experimental design, collaboration, and communication.
The survey contained 3 General questions.

The survey had four apparent categories: techniques, experimental design, knowledge, and con�dence. The grouping was
intended to mask the true intentions of the survey. This is to avoid “social desirability” response bias, since students are aware
that mathematical biologists would be viewing their responses (van de Mortel, 2008; Willis and Artino, 2013). This tendency is
of direct concern to us, due to the social perceptions of math and programming. Questions given to the students and their areas
are

Techniques

1. I am con�dent in my ability to write computer code. Tech
2. I am con�dent in my ability to write di�erential equations to describe a process. Tech
3. I am con�dent in my ability to design biological experiments. Domain
4. I am con�dent in my ability to construct conceptual models. Synth
5. I am con�dent in my ability to draw a diagram describing a system. Synth
6. I am con�dent in my ability to write a mathematical model. Tech

Experimental Design

1. When designing an experiment I think about a conceptual model. Synth
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2. When designing an experiment I think about a diagram of the system. Synth

3. When designing an experiment I think about a mathematical model of the system. Tech

Knowledge

1. Knowledge of mathematics is important as a researcher in Biology. Tech

2. Knowledge of systems is important as a researcher in Biology. Synth

3. Knowledge of experimental techniques is important as a researcher in Biology. Domain

Con�dence

1. I am con�dent in my ability to design an interdisciplinary research project. General

2. I am con�dent in my ability to collaborate with someone outside my �eld. General

3. I am con�dent in my ability to communicate with someone outside my �eld. General

2.4 Concept inventory

Because this course consisted of new biological, mathematical, and programming content, we wanted to determine if any bene�t
might be had in terms of general biology knowledge, particularly due to the presence of students outside of the �eld (engineer-
ing). We curated a set of 24 concept inventory questions on general biological knowledge from the literature (Fisher et al., 2011;
ECI, ECI; Klymkowsky et al., 2010; Shi et al., 2010; Bretz and Linenberger, 2012; Couch et al., 2015). As the course consisted of
4 general biological topics (enzymes, gene expression, di�usion, and signaling), we selected a set of 6 questions per course topic.
The 24 concept questions are provided as Supplemental Materials.

2.5 Specific inventory

Since many of the concept inventory questions we found contained information from introductory biology courses, which was
many years ago for our study population of graduate students, we developed two speci�c concept inventory surveys based on
speci�c modeling case studies: the G-protein coupled signaling pathway and �re�y luciferase enzymatic reactions. Students
took the pre-test immediately before applying their modeling skills on the case study, and post-test after. The questions covered
broad concepts that required “mathematical” or “systems” thinking, such as the factor that drives the dynamics of the system.
Questions are provided as a Supplement. Some questions are only available by contacting the authors due to the stipulation of
the original authors.

2.6 Open-ended opinion survey

We designed the open-ended opinion survey to validate our previous surveys. The open-ended survey included questions about
math con�dence, utility, and student opinion of the value of the course. All questions are available in the supplemental materials.

2.7 Analysis

To determine how the course a�ected student perceptions related to mathematical modeling in biology, we used a survey to track
changes in opinion and con�dence, a general biology concept inventory to track general biology knowledge, and two concept
inventories speci�c to the two modeling case studies as summarized in Fig. 5.

To quantify gains in learning, con�dence, or opinion we normalized for values greater than zero using posttest− pretest
100− pretest (Hake,

1998). We used a cuto� of zero since we assume that a negative learning gain represents student guessing. Negative learning
gains were observed fairly commonly in the concept inventories. For the opinion and con�dence survey, only one question by
one respondent dropped by one point in the post-survey. We considered this to be a non-signi�cant zero change.

To identify potential changes in student responses we used dependent-samples t-tests. We consider a signi�cant di�erence
to be at the p < 0.05 level. In the opinion and con�dence survey, we analyzed each question across all respondents to determine
which questions had signi�cantly di�erent responses from the initial survey (provided as Supplemental File 1). These t-tests
had 6 respondents and 5 degrees of freedom. To determine changes in con�dence across the 4 categories described earlier in the
Methods section, we averaged the responses across each category, and took the degrees of freedom to be the number of questions
less 1.
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Figure 5: Student gains were measured by the four assessment methods spread out over the semester.

Caveat. Due to the very low sample size, we urge caution with regard to interpretation of statistical signi�cance. Without
replication of our results, no conclusive inference can be made, particularly for the concept inventories. For the survey responses,
our use of the t-test is valid since the Likert scale produces ordinal data (Sullivan and Ar, 2013). When analyzing Likert scale
data, its considered better to use the median rather than the mean. For our data, almost all of the mean changes are very close to
the median, so it appears our data would be close to normally distributed.

2.8 Results
We measured changes in student understanding of biological concepts using general biology questions and questions speci�c
to course content. A dependent-samples t-test was conducted to compare student performance on the initial and �nal concept
inventories. We ask that you please keep in mind the sample size when interpreting our results. We suggest that our module and
assessments be stepping stones for others, as suggestions or cautions. Student learning gains as measured by the general biology
concept inventory showed an average gain of 15% compared to the initial student scores (Fig. 6). There was not a signi�cant
di�erence between student scores on the pre- and post-concept inventories (t(4) = 1.3, p > 0.2). Our two speci�c inventories
covering material implicitly covered during the course (i.e., quizzes on conceptual materials) showed larger learning gains. The
inventory covering the G-protein coupled receptor signaling pathway had an average gain of 13% , and the �re�y luciferase enzyme
kinetics showed an average gain of 28% (Fig. 6). There was a signi�cant di�erence between student scores on the luciferase
inventory (t(5) = 2.7, p < 0.05) but not the G-protein coupled receptor inventory (t(4) = 1.6, p > 0.1).

We measured changes in student con�dence and opinion related to quantitative biology over four categories (Fig. 6, see
Methods for description). We saw the largest improvement in the respondents’ con�dence in their mathematical and program-
ming skills (Technical skill, Mean = 61%, SD = 11%). This was a statistically signi�cant di�erence compared to initial student
responses (t(5) = 12.4, p < 0.001). Their con�dence in collaboration and communication improved by 53% on average (Gen-
eral, SD = 7%). This was a statistically signi�cant di�erence compared to initial student responses (t(2) = 13.8, p < 0.01).
The reported con�dence in synthesizing mathematical and biological concepts increased by 52% (Synth, SD = 31%). This was
a statistically signi�cant di�erence compared to initial student responses (t(4) = 3.7, p < 0.05). The respondents’ con�dence
in their �eld of biology, unrelated to mathematical biology, increased by 37% (Domain, SD = 4%). This was a statistically sig-
ni�cant di�erence compared to initial student responses (t(1) = 13.8, p < 0.05). There was a signi�cant di�erence in student
score for 11 out of the 15 survey questions (shown in Supplemental File 1). None of the survey questions in the “Knowledge”
section had a signi�cant di�erence across the semester, most likely due to high agreement on the importance of knowledge of
mathematics, systems, and experimental techniques in the pre-survey.

The open-ended survey included questions that were redundant with the survey intended to understand con�dence and
opinion changes. Respondents answered positively, and generally in agreement with the observed e�ects. In answer to the
question “Do you see yourself modeling in the future?” a student answered: I can see myself modeling in the future to determine
what can be the best initial conditions in a biological experiments.

We found the most interesting and promising answers to the question “Do you think this course will have helped you form
interdisciplinary collaboration in the future?” Yes, it has showed how important and helpful a mathematical model can be to
a biological system. The �nal question “What were your previous methods to understand or explain a biological system in an
educational or publication context? Do you think this will change after you have done some mathematical modeling?”

• Wet lab, trial and error. I will use mathematics for a better planification of experiments.
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Figure 6: Outcomes of a mathematical modeling course measured by 4 di�erent areas and two inventories. (Left) We measured
learning gains in a general biology concept inventory (Mean = 12%) as well as learning gains speci�c to two modeling scenarios
(Mean = 28% luciferase, 13% GPCR). The learning gains were signi�cant for the luciferase inventory (p < 0.05), but not
the general concept or GPCR inventories. (Right) We measured changes in students’ opinions using a survey. The students
reported large gains in their mathematics and programming con�dence (technical skill, Mean = 61%) and their opinion of the
importance and utility of quantitative methods in biology (synthesis, Mean = 52%, and general, Mean = 53%). All categories
of questions had statistically signi�cant di�erences compared to initial responses at the p < 0.05 (*) or p < 0.001 (**) levels, as
indicated in the �gure.

• I would dig in literature and take online courses on introductory levels of systems biology.

• Previous methods only included understanding steps in a diagram. Now, one must consider quantities and speed and each
step.

3 Discussion

Our results indicate that having novice graduate students apply mathematical methods to topics indirectly related to their �elds
improves their con�dence in quantitative methods as well as their opinion of the usefulness of those methods. We did not expect
to observe improvement in their con�dence to design a biological experiment. However, student responses to the open-ended
survey shed light on why we observed this improvement. The answers provided above illustrate why the course may have had
the side-e�ect of improving student con�dence in biological experimental design. The students saw the value of considering
quantitative analysis prior to designing and carrying out an experiment. This is likely also why we saw improvements in the
general con�dence category, speci�cally the ability to design a project, collaborate, and communicate outside the �eld. We believe
that the results show that presenting multiple biological systems helps reinforce the transferability of the quantitative techniques.
However, more research would be needed to determine if di�erent results would be found in a course which focused on one
system.

Our concept inventories did not show strong learning gains. This may be due to question formulation, or a lack of em-
phasis on speci�c biological concepts. Survey respondents misunderstanding a question is another possible issue in assessment
development (Willis and Artino, 2013). We attempted to ask highly conceptual questions in assessing student understanding
of the two systems, enzyme kinetics and G-protein coupled receptor signaling pathway. This is because conceptualization of a
system is an important �rst step, prior to writing a mathematical model. Conceptual understanding is more di�cult to assess,
and poor wording is likely in the �rst iteration of usage. For example, in the open-ended survey, we noticed at least one incidence
of misunderstood question. In answer to the question, “Do you think experimental design is a�ected by knowledge of mathe-
matical modeling?” a student answered: No. I don’t think modeling can overpower the benefits of experiments on any day. Each is
needed in its own way. Once you learn about the connection, it will be a�ected and possibly improved. The student interpreted this
question as forcing a choice between either experimental or mathematical methods, whereas our intention was to understand
how the students might apply their new skills in realistic research scenarios. Improvement in questionnaires would be necessary
to avoid such misunderstanding among students.

The luciferase enzyme system is much simpler than the GPCR system, both in terms of the conceptual and mathematical
complexity. This may explain the di�erence in learning gains between the two speci�c concept inventories. It may be prudent
to spend more time on the GPCR system before asking conceptual questions. Finally, setting speci�c learning goals for each
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example system in the module, in addition to the module as a whole, may help construction of conceptual systems questions.
We set goals for the module, which focused on student con�dence and technical skill, but not for the two systems.

Our module could be incorporated into existing course materials in a cell biology course, and is especially well-suited as a
laboratory component. The students will �rst need to be introduced to the basics of modeling, programming, and parameter
optimization. Then the students will be prepared to engage in the two modeling systems, particularly when provided with
example code (see Supplemental for our materials and code). Due to the emphasis on technical skill, and not on biological
concepts per se, we think that the module could be utilized with undergraduate students as well. More testing is needed to
determine its suitability and e�ectiveness at the undergraduate course in which larger numbers of students are enrolled and
more diverse population regarding mathematical and computation skills is expected.
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