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ABSTRACT
Caulobacter crescentus bacterial cells use a minimal three component Par partition
system to segregate DNA during asymmetric division. Precise division plane place-
ment is tightly controlled by MipZ protein gradients that are thought to interact with
Par proteins. How these complex protein interactions generate precise measurements
in the face of stochastic fluctuations is of significant interest. Here, we first devel-
oped a detailed computational model used to study key interactions between Par
and MipZ proteins that control chromosome segregation. In addition, we developed
a minimal intermittent-search model that captured key ParB/ParA interactions in
support of chromosome copy movement. Lastly, we found the competition between
ParA and MipZ proteins for ParB complex binding sites to be sufficient in order
to generate experimentally observed MipZ bipolar gradients. Our models provide a
framework to study how the movement of the DNA copy could communicate with
the division site placement proteins in Caulobacter crescentus cells.
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1 Introduction
During cell division, chromosome segregation is facilitated by a minimal Par family of ATPases in Caulobacter crescentus (C. cres-
centus) bacteria. The ParABS partition system consists of ParA, a deviant Walker-type ATPase and ParB, a protein that forms
a complex by binding to parS DNA sites (Surovtsev et al., 2016; Thanbichler and Shapiro, 2008; Mohl and Gober, 1997;
Toro et al., 2008; Figge et al., 2004). During the DNA replication process, a chromosome-associated ParB complex interacts
with a ParA dimer cloud that starts at the new pole and extends to the old pole, where ParB copies are first located prior to
chromosome copy segregation (Easter Jr and Gober, 2002; Figge et al., 2004). It is believed that the dynamic interactions between
the chromosome-associated ParB complex and the ParA cloud are responsible for the observed directed movement of the bacterial
chromosome copy from the old to the new pole (Toro et al., 2008; Ptacin et al., 2010; Shebelut et al., 2010). Besides ParA and
ParB, the polar landmark protein PopZ, which localizes both in the cytoplasm and also forms a polar scaffold (Lim et al., 2014;
Ptacin et al., 2014; Bowman et al., 2008) is thought to play an important role in the division mechanics of C. crescentus. PopZ has
been implicated in a variety of processes during DNA replication and segregation, such as: 1) maintaining the ParA gradient
concentration (Bowman et al., 2008; Ebersbach et al., 2008; Bowman et al., 2010; Ptacin et al., 2014), 2) recruiting proteins to
the poles (Bowman et al., 2008, 2010; Ebersbach et al., 2008) and 3) anchoring the duplicated ParB/ParS complex at the poles
(Bowman et al., 2008; Ebersbach et al., 2008).

Shortly after chromosome segregation is complete, FtsZ, a tubulin-like GTPase polymerizes and forms a ring-like structure
that is found to assemble approximately near the middle of the cell corresponding to the division plane. The localization of
FtsZ ring components seems to be influenced by its interactions with another ATPase called MipZ ( Mid-cell positioning of
FtsZ), which in turn forms bipolar gradient that peaks at each pole (Bowman et al., 2008; Sundararajan and Goley, 2017). FtsZ
assembles into a ring structure in regions of lowMipZ dimer concentration (Quardokus and Brun, 2002). It is interesting to
note that the MipZ gradient is slightly asymmetric with the minimum shifted toward the new cell pole, in line with the a similar
bias in the positioning of FtsZ ring (Ptacin et al., 2010; Schofield et al., 2010; Kiekebusch and Thanbichler, 2014). The slight
bias in positioning of the FtsZ ring is important, as this bacterium undergoes asymmetric division with one stalked daughter
cell destined to undergo additional division and the other a swarmer cell. MipZ protein localization is thought to be controlled
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by its interactions with ParB/ParS complex and DNA (Thanbichler and Shapiro, 2006; Kiekebusch et al., 2012). Even though
MipZ is the only known spatial regulator of FtsZ localization in C. crescentus (Sundararajan and Goley, 2017), it is not clear how
MipZ interactions with the ParAB partition machinery can precisely control FtsZ ring localization that facilitates asymmetric cell
division (Kiekebusch and Thanbichler, 2014).

While many details about ParB and ParA reactions in Caulobacter crescentus are becoming elucidated, how their interactions
generate persistent directed movement of ParB complexes from the old to the new pole is still not clear. To this end, several
mathematical models have been put forward to understand ParB complex movement. The first generation of models (Banigan
et al., 2011; Shtylla and Keener, 2012) were developed assuming that ParAmonomers formed continuous filaments across the cell
length, similar to spindles in eukaryotic cells, based on data from the experiments of Ptacin et al. (2010). The key underlying
idea of ParB complex movement in this initial modeling setup was that multiple weak contacts between ParB and ParA filament
disassembly were sufficient to allow ParB to track a shrinking ParA fiber bundle to the new pole. A more general setup of a
burnt-bridge Brownian ratchet model that examined hydrolysis-dependent movement of ParB on a ParA track was explored by
Shtylla and Keener (2015).

Since then, evidence against ParA polymers has emerged (Hwang et al., 2013; Vecchiarelli et al., 2012, 2014; Li et al., 2016,
2009), instead supporting a setup where ParA dimers occupy an unstructured cloud on the nucleoid. A second generation of
computational models that relies on a reaction-diffusion mechanism does not evoke ParA depolymerization but rather depends
on the two main properties of ParA/ParB system: elastic ParB binding to nucleoid ParA, and ATP hydrolysis effects on ParA
dimers due its association with a ParB complex (Hu et al., 2015, 2017; Lim et al., 2014; Surovtsev et al., 2016). In the model
proposed byHu et al. (2015, 2017) diffusion is a major mechanism for ParBmotility; whereas in the ’DNA-relay model’ described
by Lim et al. (2014) and by Surovtsev et al. (2016) ParB complexes move due to the pull of multiple elastic connections with
DNA-bound ParA. Either model does not explicitly consider the role of polar PopZ in ParA accumulations as well as the ATP
cycle of ParA dimerization.

The connection between the Par system andMipZ accumulations has not been explored as much as the ParA dynamics from
the modeling stand point. Shtylla (2017) examined a mean field PDE model that included the interactions between Par and
MipZ proteins. However, PDE formulations rely on high protein numbers and C. crescentus has only a few hundred Par proteins.
The stochastic fluctuations in protein numbers and their localization can be of tremendous significance in the context of precise
MipZ polar gradient organization and has not been explored before to our knowledge.

In this work, the core questionwewanted to examinewas howdynamic Parmachinery protein localization could be connected
with and possibly modulate MipZ accumulations at the single cell level. First, we proposed a detailed computational reaction-
diffusion model that assembled all the reactions of key divisional proteins such as ParA, ParB, PopZ andMipZ and tracked all
protein reactions and individual protein localizations within a bacterial cell. Although the computational model results were
in qualitative agreement with relevant experimental studies, the implicated reaction network is complex and computationally
intensive to simulate and to explore in depth. Additionally, we necessarily needed to include some parameters whose precise
values were unknown due to lack of experimental measurements, which introduced uncertainty in model predictions. Thus, to
better understand and capture the range of model responses, we performed a systematic sensitivity analysis (local and global) of
parameters in order to identify critical parameters that affect ParB complex movement andMipZ accumulations. Relying upon
insights provided from the computational model results, as well as ranking of critical parameters from sensitivity analysis, we were
able to develop a minimal PDEmodel in the random intermittent search framework that captured the most salient features of
ParB/ParA interactions. This minimal model is novel as random intermittent search strategies (reviewed by Bénichou et al., 2011)
have not been applied before in the context of protein localization in bacterial cells. The minimal model helped us shed light
into mechanisms controlling ParB movement for different parameter regimes that were in agreement with the computational
modeling approach.

Since the computational reaction-diffusion model could handle low protein numbers, we used it to simulate MipZ bipolar
gradients at the single cell level and then examined how robust MipZ gradients could be in constraining Z-rings at the the
experimentally observed positions. We found that uncertainty in Z-ring positioning can be significant whenMipZ protein levels
are low, thus we conjecture that additional mechanisms for division plane placement might be at play in these cells.

2 Materials and Methods

2.1 Computational model reactions

We develop a computational model that incorporates interactions between ParA, ParB, polar PopZ scaffolds, andMipZ in a three
dimensional rectangular cell, diagrammed in Figure 1(A-B). The following set of reactions and assumptions are used to derive the
model.
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Figure 1: C. crescentus diagram and corresponding model reactions. (A) Schematic model of partitioning (Par) system in
C. crescentus. (B) 3D rectangular model represents half of the cell. The bottom surface, where ParA andMipZ nucleoid dimers
co-locate, represents an idealized mid-plane nucleoid region and the two end faces represent two reactive old and new polar
regions. ParA (orange) bind to the nucleoid DNA and get released into cytoplasm as monomers due to ParB(green) hydrolysis.
ParA is also sequestered by PopZmatrix(purple) each polar region. MipZ(blue) monomers can bind to ParB and convert into
dimers that bind the nucleoid DNA.MipZ dimerization is slower without ParB. (C) Corresponding chemical reactions among
ParA monomers (AM), cytoplasmic ParA dimer (ADc), nucleoid bound ParA dimers (ADn), polar nucleoid-binding ParA
dimers (ADp), ParB complex (B), MipZ monomers (MM), nucleoid boundMipZ dimers (MDn), PopZ (Zm) included in our
model, ParA-PopZ complex (AM.Zm.AM), ParB-ParA complex (B.ADn), ParB-PopZ complex (B.Zm). The values of these
reaction rates are listed in Table 1. No flux condition is implemented for all boundaries.
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ParA reactions. ParA is an ATPase that interacts with DNA and co-localizes with the bacterial nucleoid (Vecchiarelli et al.,
2010; Ptacin et al., 2010; Vecchiarelli et al., 2012;Hwang et al., 2013). ParA undergoes a slowmulti-step conformational transition
upon binding of ATP (Vecchiarelli et al., 2010) and then dimerizes in the cytoplasm (Ptacin et al., 2010; Vecchiarelli et al., 2010).
ParA dimers are competent to bind non-specifically to nucleoid DNA (Vecchiarelli et al., 2010; Hwang et al., 2013). ATP
turn-over by ParA is slow and is coupled to ParA detachment from the nucleoid in monomer form (Vecchiarelli et al., 2010).
Correspondingly, in ourmodel ParA proteins can exist in cytoplasmicmonomer form (AM) and cytoplasmic and nucleoid-bound
dimer form (ADc and ADn) where ADc denotes cytoplasmic ParA dimer and ADn denotes nucleoid-bound ParA dimer. In
the interest of simplicity, we omit the ATP-binding steps of ParAmonomers prior to dimerization in our model. The kinetic
schemes corresponding to ParA dimerization cycles are illustrated in Figure 1(B).

ParB reactions. ParB proteins form a dense complex in the centromere-like parS region of the DNA (Mohl and Gober,
1997; Mohl, Easter, and Gober, Mohl et al.; Toro et al., 2008). Upon DNA replication two ParB complexes originate proximal to
the cell stalk (old pole): one copy remains anchored at the old pole whereas the newly replicated chromosome ParB complex
translocates to the other end of the cell (new pole) following the retracting edge of a cloud of ParA (Ptacin et al., 2010; Schofield
et al., 2010). The ParB complex is thought to be a primary mediator of chromosome segregation through simultaneous binding
and removal of ParA fromDNA (Ptacin et al., 2010; Vecchiarelli et al., 2010; Schofield et al., 2010). Specifically, ParB stimulates
ATP hydrolysis of ParA dimers, thus causing their break down into monomeric form and release from the nucleoid (Ptacin et al.,
2010; Vecchiarelli et al., 2010; Schofield et al., 2010; Hwang et al., 2013). In accordance, in our model we allow multiple ParA
dimers to interact with two ParB complexes and undergo a hydrolysis reaction, detailed in the kinetic scheme in Figure 1(C).

Polar PopZ reactions. PopZ proteins localize at both cell poles, where they form a polymeric network, or matrix that serves
to anchor multiple division proteins including ParB complexes through direct binding (Bowman et al., 2008; Ptacin et al., 2010;
Schofield et al., 2010; Laloux and Jacobs-Wagner, 2013; Ptacin et al., 2014). At the initial stages of chromosome replication PopZ
releases the new ParB complex copy from the old pole and generates two focal matrices at each pole (Laloux and Jacobs-Wagner,
2013; Ptacin et al., 2014). Polar PopZmatrices have been shown to have a critical role in the polar recruitment of ParA released
during ParB/ParA interactions (Ptacin et al., 2014). In addition, the polar landmark protein TipN that is implicated in the
recruitment of new pole markers such as the flagellum, is found at the new pole where it has been shown to directly bind ParA
monomers (Schofield et al., 2010). The enhanced interactions between ParA, PopZ, and TipN at the new pole are thought to
create a condensed ParA accumulation there, thus creating a ParA gradient (Schofield et al., 2010; Ptacin et al., 2010, 2014). We
incorporate these effects in our model by including binding between free ParA monomers and two distinct polar matrices (Zm)
located at the two cell poles, thus creating polar ParA monomer complexes (AM.Zm.AM), illustrated in Figure 1. In addition, we
allow for dimerization of ParA into a nucleoid binding competent form (ADp) within the polar matrix, in agreement with the
idea that matrix capture of ParA monomers favors their re-dimerization and release into the cytoplasm (Ptacin et al., 2014). In
our model we do not explicitly include TipN, instead we include its role by varying the total number of generic PopZ proteins at
each pole in order to capture differences in polar accumulation between the old and new pole. Thus, a mutant cell ΔtipN is
implemented as a scenario in which both poles contain the same number of PopZ proteins in our model.

MipZ reactions. The protein MipZ is another important C. crescentus division ATPase that localizes dynamically in coor-
dination with Par proteins (Thanbichler and Shapiro, 2006; Kiekebusch et al., 2012). MipZ can exist in both monomer form
(MM), cytoplasmic dimer (MDc) and nucleoid-bound form (MDn) (Thanbichler and Shapiro, 2006; Kiekebusch et al., 2012).
Similar to ParA, MipZ binds non-specifically to the nucleoid in an ATP dependent fashion, whereby ATP-boundMipZ dimers
associate with DNA andMipZmonomers are released in the cytoplasm upon slow hydrolysis of ATP.MipZ initially accumulates
at the old pole and then displays a moving front that coincides with ParB complex movement to the new pole, subsequently
resulting in a bipolar accumulation of MipZ that accumulates around the two ParB complexes at each pole. In contrast to ParA,
MipZ dimers have an inefficient dimerization rate on their own but in the presence of ParB, MipZ’s dimerization is strongly
favored (Kiekebusch et al., 2012). Correspondingly, in our model ParB complexes can capture multiple MipZ monomers, which
then dimerize and are thus competent to bind the nucleoid, illustrated in Figure 1(B)-(C). Finally, MipZ monomers can also
slowly dimerize and bind the nucleoid independently of ParB.

2.2 Stochastic simulation of the model reactions
Spatial reaction simulation algorithm. We implemented simulations that incorporated all the model reactions in a
three-dimensional rectangular cell, as illustrated in Figure 1(B) and in Supplementary Material, Table S1. A rectangular domain
was chosen because it was the simplest framework for implementation of boundary conditions and surface reactions. With this
approach we were able to capture key surface reactions at the cell poles corresponding to rectangular faces as well as movement
along the long axis of the cell. We implemented reaction simulations using an efficient particle-based software called Smoldyn
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(version 2.4.7) (Andrews, 2016) that uses an accurate off-lattice method to simulate reaction-diffusion networks on arbitrary
domains and surfaces. This software produces reliable results in agreement with analytical predictions (Andrews et al., 2010)
and has been used in various particle based simulations in cell biology, with several applications to the related E. coliMin system
(Lipkow et al., 2005). Code scripts used to generate model results are given in the Supplementary Material, Section 5.

We outline the key features of the spatial reaction simulator algorithm. Each protein in our reaction network is treated as a
point-like particle that diffuses in three dimensional space with continuous position variables and continuous time. There are
two key ingredients to take care of in this setting: 1) diffusion of molecules in a closed domain, 2) reactions between molecules
and molecules and surfaces.

Diffusion. Particle diffusion is simulated using a Brownian dynamics approach in which displacement for a diffusing particle
in one time step Δt is obtained by drawing a random displacement along x,y and z-coordinates from the Gaussian distribution
(GB (·)) that arises as the solutions for diffusion equation of the probability density function of finding a molecule at some point
in space and time. Specifically, the probability of moving a particle a random displacement Δr, ( where r = (x, y, z)) at each time
step, namely pB (r + Δr, t + Δt) is the product of the Gaussian distribution (GB (·)) along x,y and z coordinates

pB (r + Δr, t + Δt) = GB (Δx)GB (Δy)GB (Δz)

GB (Δx) =
1

2
√
πDB

· 1
√
Δt exp

(
−Δx2

2s2

)
where Δx,Δy,Δy are the Cartesian displacements,GB (Δx) is normalized Gaussian with mean 0 and standard deviation s.

Reactions. In this framework, a diffusion-limited bimolecular reaction A + B → C occurs once two molecules A and B are
separated by a binding radius (σb). For reversible reactions such as A + B ↔ C , to avoid a nearly instantaneous reaction back to
C, the A and B dissociation products are initially separated by a fixed distance, namely the unbinding radius (σu) which is larger
than binding radius. Both radii are derived from the reaction rate for this physical description as discussed in (Andrews and Bray,
2004; Andrews et al., 2010). We note here that this approach only addresses bi-molecular reactions; in our model all reactions
are decomposed into multiple bi-molecular interactions when more than two particles interact. Where necessary, BioNetGen
(Blinov et al., 2004) was used along with Smoldyn to automatically and accurately decompose multi-molecular reactions.

All the reactions are executed during each time step Δt, which is calculated internally by the algorithm. The need to track
individual molecules in this setting imposes high computational demands and thus efficient algorithm implementation and
reproducibility are of paramount importance. Therefore, we implemented our model in a robust and replicable framework;
detailed discussion of algorithms implemented in Smoldyn can be found in (Andrews and Bray, 2004; Andrews, 2016; Andrews
et al., 2010).

Model setup. Reactions were simulated within a model cell represented by a 3D rectangular cube with default dimensions of
3 µm in length, 0.3 µm in width and 0.7 µm in height, Figure 1(B). Two cube end surfaces (left and right) represent two reactive
polar regions on which PopZ can experience two-dimensional surface diffusion. If ParA and ParB are within the binding radius
of polar PopZ, they will be converted into polar complexes that diffuse on the polar surfaces (see reactions from Figure 1C).
These reactive cube end surfaces serve as PopZ matrices in our model, i.e. we do not explicitly simulate three dimensional PopZ
matrix dynamics. The bottom surface is where ParB, ParA andMipZ nucleoid bound dimers diffuse on and interact with all
other proteins that are in its proximity. We implemented no flux boundary conditions on all cell boundaries so that total protein
numbers were conserved in the cell. Unless otherwise stated, we simulate reactions between 300 ParAmonomers, 900MipZ
monomers, 1 PopZmonomer at the old pole and 5 PopZ at the new pole (Shtylla, 2017; Lim et al., 2014). At the start of each
simulation, one ParB complex copy is held fixed at the old pole while the duplicated ParB complex can freely move inside the
rectangular domain, ParA andMipZ monomers were initially distributed uniformly within the cell. The main computational
bottleneck arises fromParB complexes, which can interact with bothmultiple ParA andMipZmolecules, in addition to anchoring
on the polar PopZ matrix. This creates a combinatorial challenge when accounting for all bi-molecular reactions. In accordance,
we limited the total number of ParB complex binding sites to four in total (note that these sites are available to ParA dimers and
MipZ dimers). Even in this simplified setup, there is high computational load due to the high number of possible ParB complex
states inside the cell. To resolve this, we employed the BioNetGen package (Blinov et al., 2004) that can automate the generation
of complex reaction networks prior to execution with Smoldyn. We developed customMatlab scripts to process and analyze the
results from the spatial simulator.

ParA/MipZ monomers and cytoplasmic dimers can diffuse freely inside the rectangular model cell. In C. crescentus, the
nucleoid contains DNA and it occupies most of the interior cell volume. In our model, we do not model DNA dynamics, instead,
we assume that the entire volume of the cell is occupied by nucleoid. In practice, this means any species inside our model cell can
convert into nucleoid-bound species with some prescribed rate.
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Initialize: molecules start at 
prescribed positions. 

Diffusion is simulated by picking a 
normally distributed random 
displacement for each molecule.

Check for surface interactions. 
Determine whether any molecule 
is interacting with any surface. 

Check for unimolecular reactions: A        C. 
Calculate reaction probability from the 
reaction rate.

Check for biomolecular reactions: A + B      C. 
Calculate reaction probability by comparing 
reactants’ positions with the binding radius.

 t   

Update all reactant states

Figure 2: Flowchart of the spatial reaction simulator adapted from Andrews et al. (2010). Smoldyn algorithm treats each
molecule in the reaction network as point-like particle. At each time step, diffusion is first simulated by randomly picking a
random displacement for each molecule. Surface interactions are then determined if the molecules interact with any surface
at each time step. The probability for the unimolecular reactions to occur is computed from the reaction rates. Lastly, the
probability of the bimolecular reactions is computed by comparing the positions between the two reactants with the binding
radius. The time step Δt is calculated as detailed by Andrews and Bray (2004).
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With the above assumptions, we can simulate a full three dimensional model (sample code provided in the Supplementary
Material). The model was initialized with one ParB held fixed at the old pole, a free ParB, 300 cytoplasmic ParAmonomers, 1
PopZ at the old pole and 5 PopZ on the new pole. We observed ParA monomers being recruited by the polar PopZ matrices and
forming cloud of ParA dimers near both poles. However, due to the asymmetric distribution of PopZ between the poles, more
ParA dimers were found near new pole. Although mobile ParB could freely move inside the cell, it moved in a directed fashion
toward the new pole with small variation along the z-axis; effectively moving along two dimensional surface. Once close to the
new pole, ParB anchored at the new pole by interacting with PopZ there.

Two-dimensional ParB path reduction. Full three dimensional cell model simulations generate a significant amount of
protein position data with small variation along the z-axis during segregation of the ParB complex from the old to the new pole.
However, experimental tracking data of ParB segregation from the new to the old pole that we used to calibrate the model are
given at most in two dimensions along a cross section of the bacterial cell. In light of this and in order to simplify the simulations
and data analysis, we reduced model complexity by constraining ParB complex movement to the bottom the cell box. This
assumption allows us to analyze the ParB complex movement on a planar axis with no z-coordinate variation. In this setting, ParB
diffuses on the bottom surface and interacts with all inner cell binding partners that are in its proximity. In addition in this set up,
ParA andMipZ dimers once converted to nucleoid bound species can bind to the bottom surface. Comparison studies did not
show significant changes in the segregation movement of the complex from one pole to the other using this reduction as opposed
to a full three dimensional simulation. Therefore for the remainder of this paper we chose to retain this planar constraint setup
for ParB, as illustrated in Figure 1(B). The values of the implemented reaction rates are listed in Table 1.

3 Results

3.1 Computational model results

We first ran a few control cases to make sure that there were no artifacts introduced in the simulations. Specifically, we simulated
our model with only two ParB complexes (no ParA/MipZ/PopZ). Themodel results showed that nomovement bias emerged and
that ParB experienced pure diffusionwhen partner proteins weremissing. Details on these simulations are given in Supplementary
Material, Figures S1–S3.

ParB displays directed movement in the presence of both ParA gradient and PopZ. Next, we simulated a cell
that had asymmetric accumulation of PopZ at the poles. For these simulations we included 1 PopZ at the old pole, 5 PopZ at the
new pole, 300 ParA monomers initially uniformly placed across the cell, 1 ParB was anchored at the old pole while the other ParB
was initially positioned in proximity to the old pole. All parameter values for Par reactions correspond to the baseline values in
Table 1.

In Figure 3(A)-(B) we show typical ParB trajectories along both the cell length and cell width, as well as a kymograph
illustrating the position of ParA dimers in relation to ParB in Figure 3(C). In order to track the interactions between ParB and
ParA, we recorded ParB’s binding state to ParA. In Figure 3(A)-(B) blue trajectory corresponds to ParBwhen it is not bound to any
ParA dimers and red corresponds to ParB when it is bound to at least one ParA dimer. Our results show that long runs correspond
with ParB binding to at least one ParA dimer while short runs correspond with ParB not bound to any ParA. Additionally, ParB
shows directed movement toward the new pole by trailing the edge of a shrinking ParA gradient, in agreement with data, as
illustrated in Figure 3(C). Our results also demonstrate that ParA proteins in turn form a gradient that peaks at the new pole due
to higher PopZ presence at the new pole versus the old pole (5 PopZ at the new pole and 1 PopZ at the old pole.)

We recorded ParB’s position along the cell length only (x-axis) and then smoothened the data using a Fast Fourier Transform
(FFT). Run length was calculated in micrometers (µm) as the length of the path for which ParB did not reverse direction. Run
time (in minutes) was defined as the duration corresponding to each run length and run speed was computed in µm/min as the
ratio of run length to run time. For our purposes, a run length is considered to be short if it is less than 0.1 µm, otherwise, it is
called a long run length. Therefore, instead of manually assigning ’slow’ and ’fast’ phases as in (Lim et al., 2014), we categorize
using our threshold for a ’slow’ phase with a short run length and a ’fast’ phase with a long run length.

In Figure 3(D)-(F) we ran the run length analysis for 100 independent simulations, and observed that average run lengths and
run speeds increase due to ParB complex experiencing directed motion toward the new pole in the presence of ParA gradient.
We computed an average ParB run speed of about 4 µm/min, which is faster than the reported speed in (Lim et al., 2014); note
however that our run length and run time estimates are different than those in (Lim et al., 2014), so it is likely that this is affecting
estimates of run speeds. Later we will show that ParB complex run speeds can be controlled by varying a few important model
parameters.
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Table 1: Model Parameters. Parameters are obtained by varying their values within their range of uncertainty until the simulated
data are in agreement with available experimental data.

Parameter Notation Model range Baseline Reference range Reference

Rate of ParA dimer-
ization

k1 0.5 × 10−5 µm3s−1 0.000005 µm3s−1 0.011 µm3s−1 Vecchiarelli et al., 2010

ParA nucleoid bind-
ing rate

k2 0.001 − 0.01 s−1 0.01 s−1 0 − 0.01 s−1 Hu et al., 2017; Lim et al.,
2014

ParA-ParB associa-
tion rate

k3 0.1 − 3300 s−1 3000 s−1 103 − 106 s−1 Hu et al., 2015; Vecchiarelli
et al., 2014

Rate of ParB-
induced ParA dimer
hydrolysis

k4 0.01 − 5 s−1 0.5 s−1 0.5 − 3 s−1 Surovtsev et al., 2016; Hu
et al., 2015, 2017

ParA natural hydroly-
sis rate

k5 0.0004 − 0.05 s−1 0.008 s−1 0.0004 − 0.05 s−1 Hu et al., 2017

ParA-PopZ polar se-
questing rate

k6 0.001 − 0.01 s−1 0.9 s−1 0.01 − 1.67 s−1 Shtylla and Keener, 2015

ParA polar flux rate k7 0.001 − 1 s−1 0.01 s−1 0.01 − 1.67 s−1 Bonny et al., 2013; Shtylla
and Keener, 2015

ParA polar to cyto-
plasmic conversion
rate

k8 0.001 − 1 µm3s−1 0.45 µm3s−1 0.01 − 1.67 s−1 Bonny et al., 2013; Shtylla
and Keener, 2015

MipZ natural dimer-
ization rate

k∗9 0.0004 − 0.05 s−1 0.01 s−1 Ranges chosen to match
with k5

ParB-MipZ
monomer reac-
tion rate

k∗11 0.001 − 0.01 s−1 0.01 s−1 Ranges chosen to match
with k6

MipZ dimerization
rate (with ParB)

k13 0.0001 − 3 s−1 0.2 s−1 0.0001 − 3 s−1 Shtylla, 2017

MipZ natural hydrol-
ysis rate

k14 0.0001 − 0.01 s−1 0.001 s−1 0.0001 − 0.01 s−1 Kiekebusch et al., 2012

ParB-PopZ reaction
rate

k∗15 0.001 − 0.01 s−1 0.001 s−1 Ranges chosen to match
with k6

Diffusion coefficient
of free ParA/MipZ
monomers

DMM = DAM 10−2 − 10−1 µm2s−1 0.02 µm3s−1 10−2 − 10−1 µm2s−1 Shtylla, 2017; Elowitz et al.,
1999; Weber et al., 2010

Diffusion of DNA-
bound ParA dimer

DADn 10−4 − 10−2 µm2s−1 0.01 µm2s−1 10−4 − 10−2 µm2s−1 Lim et al., 2014; Surovtsev
et al., 2016; Hu et al., 2017,
2015

Diffusion coefficient
of MipZ dimer

DMDn 10−4 − 10−2 µm2s−1 0.001 µm3s−1 10−4 − 10−2 µm2s−1 estimated same asDADn

Diffusion coefficient
of PopZ

DZm 10−2 − 10−1 µm2s−1 0.01 µm3s−1 10−2 − 10−1 µm2s−1 estimated same asDADn

Diffusion coefficient
of ParB

DB 0.0001 − 0.1 µm2s−1 0.0001 µm2s−1 0.0001 − 0.1 µm2s−1 Hu et al., 2015; Sliusarenko
et al., 2011; Hu et al., 2017;
Laloux and Jacobs-Wagner,
2014
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Figure 3: ParB motion using model baseline parameter values. (A) A representative 2D trajectory of ParB position along the
nucleoid for 100 minutes of simulation. (B) A representative trajectory of both immobile ParB (old pole) and free ParB along the
cell for 100 minutes of simulation; blue marker corresponds to unbound ParB and red marker corresponds to the ParB associated
with at least one ParA dimer. (C) A kymograph of ParA distribution (yellow) overlaid with ParB’s trajectory (red) for 100minutes
of simulation. (D)-(F) Histograms of ParB complex runlength, runtime and run speed (n = 100).

ParB movement reversals in response to ParA overproduction. Since ParB shows sensitivity to ParA gradient,
next, we sought to test how ParB segregation changed when ParA was overproduced in the cell and thus likely to lose new pole
directed gradient, in accordance with the experiments of Schofield et al. (2010). Specifically, Schofield et al. (2010) proposed that
polar saturation with ParA in cases of over-expression could cause oscillatory ParB movement that tracked the edge of a moving
ParA gradient from one pole to the other. To capture these scenarios in our model, we tripled the number of ParA monomers in
the cell to 900 ParAmonomers, while PopZmatrix was altered gradually as follows: a) no PopZ at the two poles to represent
PopZ being fully saturated with ParA and unable to sequester any more ParA, b) equal ratio of PopZ at the two poles (1 PopZ
proteins per pole) to capture polar saturation in conditions of symmetrical capacity for binding ParA (i.e., a ParA over-expression
in ΔTipNmutant) c) PopZ ratio of 1 to 2 between old and new pole (1 PopZ at the old pole and 2 PopZ at the new pole) to
represent a ParA over-expression in a wild-type cell where there is a mild non-symmetrical binding capacity for ParA due to the
action of TipN at the new pole.

Figure 4 shows model simulation results for the three scenarios listed above. We observed that a ParA cloud fails to condense
at the new pole when ParA is over-expressed both in the case when there is either no PopZ around or equal amount of PopZ
in each pole, as seen in Figure 4(A)-(B). This created a lack of new-pole directed gradient and correspondingly lack of directed
ParB movement. Overabundant ParA also formed large clouds expanding from the new pole toward the old pole causing ParB
to stochastically transition between poleward and anti-poleward motion due to equal ParA presence both close to the old pole
and the new pole. However, when introducing slight asymmetry in PopZ between the 2 poles, the ParA cloud was able to form
a weak gradient from the new pole to the old pole, and ParB in this case (Figure 4C) experiences directed movement. Note
that overexpressing ParA created trailing ParA behind ParB which caused frequent ParB reversals and delayed segregation even
when there was more PopZ at the new pole compared to the old, Figure 4(C). Yet, in all test cases, we did not observe sustained
oscillatory waves of ParA and correspondingly ParB between the two poles, which were sometimes observed in (Schofield et al.,
2010). Oscillatory (pole to pole traveling waves) could emerge if there is a delay between the ParB reading of ParA gradient
changes, however, in our model the ParB complex instantaneously senses any change in local ParA gradient cues which prevents it
from experiencing pole to pole tracking of ParA waves. Oscillatory waves were shown to emerge when an additional ParA sensing
species is added in the mix to add delay to ParB gradient reading as outlined by Shtylla (2017).

ParB-meditated ATP hydrolysis of ParA plays a critical role in complex movement directionality. Thus far
our model results indicate that ParB directionality is critically affected by the presence of ParA gradient that peak at the new pole.
However, in the computational model of Lim et al. (2014), it was intriguingly reported that ParB complexes failed to produce
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Figure 4: ParB motion under ParA overexpression and polar saturation. (A) ParA kymograph overlaid with ParB trajectories
and no PopZ at two poles to capture polar PopZ is fully saturated with ParA and unable to bind with additional ParA. (B) Same
as (A) but with 1 PopZ at each pole to capture polar PopZ saturation with ParA but still able to have a symmetric capacity for
binding ParA. (C) Same as (A) but with 1 PopZ at the old pole and 2 PopZ at the new pole to capture a mild polar saturation but
with asymmetrical binding capacity for ParA between the 2 poles. There are 900 ParA for all simulations, all other parameters are
set to baseline Table 1.
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Figure 5: Comparison of ParB motion using different values of k4 . All parameters are kept at the baseline values. (A) 2D
trajectory of ParB in both the long and short cell axes, blue marker represents ParB’s trajectory using k4 = 0.03 s−1(Lim et al.,
2014) and orange marker represents ParB’s trajectory using k4 = 0.5 s−1. (B) Distribution of ParB run time corresponding with
k4 = 0.03 s−1 (blue) and k4 = 0.5 s−1 (orange). (C) Distribution of ParB run length corresponding with k4 = 0.03 s−1 (blue) and
k4 = 0.5 s−1 (orange).

directedmovement in the presence new-pole-directed ParA gradient. We thus next examined conditions for which Lim et al. (2014)
simulated their model in our own computational model. For this purpose we simulated the model with parameter values that
follow Lim et al. (2014) when applicable such as we adjusted the rate ParB-induced ParA dimer hydrolysis down to k4 = 0.03 s−1;
otherwise parameters were kept at the baseline values from Table 1. In Figure 5(A) we compared our model results with slow
k4 (mimicking Lim et al., 2014) by tracking the ParB trajectory along the cell. In Figure 5(A) light orange marker represents
our baseline value of k4 and light blue marker represents the lower k4 of Lim et al. (2014). In addition in Figure 5(B)-(C) we
calculated the average run length, run time and run speed of ParB in both cases (n = 100).

Our simulations in Figure 5(A) show that when the rate ParB-induced ParA dimer’s hydrolysis was lowered to k4 = 0.03 s−1
in our model, ParB took a long time to hydrolyze one ParA dimer (33 seconds) and thus experienced diffusive movement even
though a ParA gradient was present due to asymmetric distribution of PopZ between the two poles (2 PopZmonomers at the old
pole and 4 PopZmonomers at the new pole); this agrees with the observed diffusive motion of ParB of Lim et al. (2014) due to
the low rate k4 = 0.03 s−1 which effectively dilutes the effects of the ParA gradient on ParB motion. When changing the rate
ParB-induced ParA dimer hydrolysis to our baseline of k4 = 0.5 s−1, ParB could hydrolyze one ParA dimer quickly (2 seconds)
and thus experienced directed movement trailing a ParA gradient and anchored at the new pole (orange marker trajectory in
Figure 5(A)). These results indicate that ParB is likely to fail to produce directed movement in (Lim et al., 2014) due to the low
ParB-induced hydrolysis rate of ParA in presence of ParB (k4). On the other hand, it must be remarked that ParB’s diffusion
coefficient in (Lim et al., 2014) has also been considered to be too slow to admit directed ParB movement (Hu et al., 2015, 2017).
Overall, our model results indicate that the hydrolysis rate k4 can have a critical role in the ability of the ParB complex to move in
agreement with data, and thus model parameter ranges should be carefully and systematically studied when considering ParB
motility regimes. We investigate the effects of parameter variation on ParB movement statistics in the next section.
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Figure 6: ParB average speed (left blue y-axis) and short-run percentage (right red y-axis) as a function of a single parameter
while the rest are kept at the baseline values. Solid red and blue lines mark LOESS fitting. (A) Relationship between ParB average
speed and short-run percentage withDB. (B) Relationship between ParB average speed and short-run percentage with k4. (C)
Relationship with Relationship between ParB average speed and short-run percentage with k2. (D) Relationship between ParB
average speed and short-run percentage with k2. (E) Relationship between ParB average speed and short-run percentage with
k6.(F) Relationship between ParB average speed and short-run percentage with ratio of PopZ proteins at the new pole and the
number of PopZ proteins at the old pole (PopZ polar ratio).

3.1.1 Parameter sensitivity analysis

Local sensitivity analysis. As a first step, we performed single parameter variation studies, i.e., we varied one parameter
within the reported ranges we could find in the literature, while keeping the rest of the parameters at their baseline values. We
calculated two metrics of model output for each parameter input. First, we computed the partition complex’ average directed
speed as it translocated from one pole to another. Average directed speed is defined here as the mean of the run speeds (n = 100)
corresponding to run lengths that are longer than 0.1 µm, i.e. long-runs. Secondly, we computed the percentage of partition
complex’ short-runs defined as the percent of run lengths that are shorter than 0.1 µm, i.e., short-runs. The percentage short-runs
are the ratio between the short run length to the total run lengths calculated over n = 100 simulations as described in the previous
section.

Selected results from single parameter variation calculations are shown in Figure 6. To summarize, k4, k2, k6 showed interesting
trends in themodel behavior indicating a critical role of ParB-induced hydrolysis rates and ParA gradient formation in determining
the ability of the ParB complex to experience directed movement. Specifically, our results are in support of an optimal range of
the rate ParB-induced ParA-ATP hydrolysis, k4 values for which ParB attains its highest speed and correspondingly lowest percent
of slow runs. On the other hand, as ParA nucleoid binding rate k2 increased, the ParB speed also increased until it saturated to a
constant value, indicating high sensitivity of ParB movement to ParA binding to the nucleoid. Similarly, ParB velocities increased
with the rate of ParA sequestration at the pole, k6 and the PopZ polar ratio, which in turn strengthen the effect of an asymmetric
ParA gradient in the cell. The rest of the parameters show fast saturation of velocities and percent slow runs in the tested ranges
indicating that their effect might not be as significant past a particular low threshold. To probe these relationships a bit more
closely, we investigated model behavior in the cases where two parameters were varied simultaneously, as shown in Figure 7.

The two parameter heat maps in Figure 7 show the dependence of the partition complex mean velocity and percent slow
runs between ParA nucleoid binding rate k2 and ParB-induced ParA-ATP hydrolysis rate, k4 and ParA polar sequestration rate,
k6. We note the complementary nature of the mean velocity and percent slow run results showcased by the heatmaps; this
indicates that high velocities indeed correspond to directed movement, whereas low velocities correspond to non-directed or
diffusive movement as marked by a high percentage of slow runs. We also remark that two parameter regimes emerge in the
heatmaps, corresponding to directed (high velocity) and diffusive (non-directed movement). Specifically, in Figure 7(A)-(B),
ParB experienced directed movement in the optimal k4 ranges, with the optimal range widening as k2 increased. This indicates
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Figure 7: Two-parameter heat maps of ParB average speed and percentage of slow runs as function of k2, k4 and k2, k6 pairwise.
(A) Heat map of ParB average speed as a function of k2 and k4. (B) Heat map of ParB slow run percentage as a function of k2 and
k4. (C) Heat map of ParB’s average speed as a function of k2 and k6. (D) Heat map of percentage of slow runs as a function of k2
and k6.

that faster ParA nucleoid binding can help overcome slow rate at which ParB-induced ParA ATP hydrolysis, thereby indicating
a complementary role between these two reactions in improving ParB complex directed movement. We note Hu et al. (2017)
reported similar patterns between ParB-induced hydrolysis rate and ParA binding rates; however, in our case we only see two
modes of movement, namely directed and diffusive movement. Similarly, ParB experienced directed movement in the limits
of high ParA nucleoid binding and high ParA polar sequestration, shown in Figure 7(C)-(D). Overall, the heatmaps highlight
the nontrivial boundaries between directed and diffusive ParB motility modes as parameters are changed. We thus next seek to
explore model response when multiple parameters are changed at the same time.

Global parameter sensitivity analysis. Given the non-trivial relations between parameter values and model responses we
sought to formally explore model response as multiple parameters are changed simultaneously. We focus our attention to a subset
of parameters that showed non-trivial responses in the single parameter changes in the previous section. Specifically, we explore
simultaneous variation of the following parameters: ParB diffusion coefficient (DB), the rate ParB-induced ParA-ATP hydrolysis
(k4), ParA nucleoid binding rate (k2) and polar PopZ sequestration rate (k6) and keep the rest fixed.

We employ two techniques reviewed byMarino et al. (2008), namely partial rank correlation coefficient (PRCC) and extended
Fourier amplitude sensitivity test (eFAST) in order to rank the parameters in order of influence on mean velocities and percent
slow runs. These techniques have wide spread use in various deterministic models, however they can be of significant use in
computational stochastic models in cell biology where we have multiple parameters changing over wide ranges due to lack of
direct measurement in experiments. Detailed implementation and discussion about these methods are beyond the scope of this
paper, but they can be found in (Marino et al., 2008; Saltelli et al., 2008).

Since a non-monotonic relationship between k4 and the model outputs is present (as shown in the Figure 6), we split k4
ranges into 2 intervals where monotonicity is preserved when we perform PRCC as follows. Low range k4 includes all parameter
combinations for which k4 values are less than 0.1 s−1, whereas k4 ≥ 0.5 s−1 are classified in the high k4 range.

Figure 8 shows the magnitude of PRCC values for each parameter of interest (DB, k4, k2, k6) with respect to the average speed
and percentage of slow-runs corresponding to low and high range of k4. In either low or high hydrolysis ranges, ParB speed and
percentage of slow-runs remain consistently sensitive to k4 and k2 whereas the ranking ofDB and k6 can change depending on k4.
In the low range, k4 stands out as the most sensitive parameter and k6 seems not to contribute into the average speed of ParB;
however, in the high range of k4, k6 appears to be most sensitive with respect to both average speed and slow-runs percentage.
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Figure 8: Bar plot of the magnitude of PRCC values for ParB complex average speed and short percent runs (N = 500) for low
and high range of k4. (A) PRCC of each parameter in the low range of k4. (B) PRCC of each parameter in the high range of k4.
The symbol ∗ marks statistical significance with p < 0.01.
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Figure 9: eFAST Si index results (N = 65). (A) eFAST Si results for average speed. (B) eFAST Si results for slow-runs percent.
The symbol ∗ marks statistical significance (p < 0.01) measured using a Dummy variable.

Interestingly, we observe that the average speed and percentage of slow runs are both most sensitive toDB in the low range of k4
and in the high k4 range they lose sensitivity to complex diffusionDB with polar sequestration, k6 becoming more important.

Next we examine eFAST ranking. There are two sensitivity measurements that are obtained through eFAST: 1) a first-order
sensitivity index Si , which represents the main contribution of an i th parameter to the overall model output variation and 2) a
total sensitivity index STi , which accounts for not only the main i th parameter contribution, but also captures the effects of its
interaction with other parameters (Marino et al., 2008; Saltelli et al., 2008). Both Si and STi values range between 0 and 1. The
smaller magnitude a sensitivity index is, the less influential it is to the model output variation. Ranking based on Si is typically
suitable for linear models when the interactions among parameters do not contribute significantly to the output variance, while
ranking based on STi is more appropriate for nonlinear models. Here we consider both indexes. In addition, since the eFAST
method can be applied when there are non-linear, non-monotonic relations between model parameters and model outputs, we
do not need to split the parameter space here in subintervals as we did with PRCC.

The eFAST ranking displayed in Figure 9 shows that ParB speed and percent of slow runs are both sensitive toDB and k4
whereas percentage of slow-runs shows additional sensitivity to k2 since both Si and STi remain significant for this parameter (see
Table 2 for STi). There is no conclusion on k6 effects on speeds and percent slow runs using this ranking.

Table 2 combines all PRCC values and eFAST sensitivity indexes for each parameter for our two model outputs of ParB
speed and percentage of slow runs. Since PRCCmeasures the correlation between the input parameters and the model outputs
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Table 2: PRCC and eFAST summary. The order in which the parameters are listed reflects the magnitude of the sensitivity
coefficient in absolute value from high to low (most sensitive to least sensitive).

Sensitivity Index Parameters with significant sensitivity index

Speed Percent

eFAST − Si k4,DB k2, k4,DB

eFAST − STi k4,DB k2, k4
PRCC (low k4) k4,DB, k2 k4,DB, k2, k6

PRCC (high k4) k6, k4, k2 k6, k2, k4,DB

Figure 10: (A) Illustration of intermittent search strategies. Searcher (ParB) looks for a target. It alternates between fast
relocation phases, which are not reactive (green) as they do not allow target detection and slow relocation phase, which are reactive
(blue), allowing it to detect target (purple). (B) A minimal model of intermittent search for ParB. Periodic boundary condition is
chosen as it is equivalent to the case of one target centered in a finite domain with reflective boundaries.

while eFASTmeasures the variance of the model under the effects of varying parameter values, their ranking may be different.
However, in comparing their results, we note a common group of parameters that both methods agree as being critical to the
model’s outputs. So we highlight them here accordingly. The hydrolysis rate k4 seems to be the most important parameter for
both ParB average speed (also claimed by Hu et al., 2015) and percentage of slow runs. A second important parameter is the
diffusion coefficient for ParB complexes,DB which appears especially critical to average speeds under the low range of k4 from
our analysis. These results on k4,DB confirm the critical interplay of the rate ParB-induced ParA-ATP hydrolysis with ParB
complex diffusion and can help explain prior work and our own simulation observations. In Figure 5 we saw that when k4 is low,
with a reduced diffusion coefficientDB = 0.0001 µm2s−1 as in the model of Lim et al. (2014) could lead ParB to fail to produce
directed movement. Meanwhile, changing k4 from a low 0.03 s−1 to our baseline 0.5 s−1 (the lower bound in the acceptable range
for k4 in Hu et al., 2015) can transition ParB from the reported diffusive movement of Lim et al. (2014) to directed movement as
we observe here and in Hu et al. (2015). The role of low diffusion was questioned in (Hu et al., 2015, 2017); however, here we see
that it is both the rate ParB-induced ParA-ATP hydrolysis rate and diffusion coefficient that can team up to prevent directed
movement.

The rest of the parameters seem to show changes in ranking or statistical significance, however, the percentage of slow runs
showed a consistent high ranking of k2 in our analysis. This ranking makes sense since this parameter is responsible for the rate of
ParA binding on the nucleoid and thus gradient formation, which is necessary in order to observe directed ParB movement as
also reported by Hu et al. (2017).

3.2 A reduced intermittent search model for ParB movement

The local and global parameter sensitivity analysis in the previous section indicated that k4,DB, k2, k6 were important for ParB
complex motility. Next, we explore a reduced model in the intermittent search framework (Bénichou et al., 2011; Newby and
Bressloff, 2009) that only contained these key parameters and associated pathways for ParB complex motility, as assessed from the
sensitivity analysis. This minimal modeling approach is novel and it allows us to more explicitly analyze ParB movement.

In this framework, the searcher (ParB) looks for a target (new pole) by alternating between fast directed ParA-bound state
and a free diffusive (search) state. In the spirit of intermittent search models and in alignment with our simulations, ParB can
only bind its target when it is in search state. So the question then is what is the best strategy for finding the target given that the
complex can be in either a fast directed state or in a slow diffusive state. We explore this with a mean first passage approach next.
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The ParB complex can be in either of the following 2 states within the interior of the cell:

• n = 1: diffusive state in which ParB diffuses along the one dimensional path.

• n = 2: advective state, during which it is inaccessible to react with any protein andmoves with ballistic motion at a constant
velocity v.

The target is assumed to be a perfect reactive point, that is the reaction occurs as soon as the target is reached by the protein
and that ParB can only detect and bind to the target when it is in diffusive state. We further assume that ParA gradient is at steady
state. We chose periodic boundary conditions as it is equivalent to the case of one target centered in a finite domain with reflective
boundaries as illustrated in Figure 10(B) (Bénichou et al., 2011).

Let p(x, i, t | x0, i0, t0) be the probability that ParB at position x and state i at time t given that it initiated at position x0,
state i0 at time t0, which can be shortened as p(x, i, t | x0, i0, 0) = pi (x, t). Then pi (x, t) must satisfy the following forward
Chapman-Kolmogorov equation:

𝜕p1
𝜕t

= DB
𝜕2p1
𝜕x2

+ k4p2 − k2p1

𝜕p2
𝜕t

= −v
𝜕p2
𝜕x

− k4p2 + k2p1
(1)

where we set v = k2 + k6. Note that this minimal model relies only on our knowledge of the key sensitive parameters k4,DB, k6
and k2. The motion of ParB in diffusive state (n = 1) is modeled by a continuous motion with diffusion coefficientDB and k4, k2
are the transition rates between diffusive and advective state. When ParB detects ParA gradient, it advects with a constant speed v,
which is assumed to be proportional to the total effect of k2 and k6.

Let t(y, i) represent the average time needed for ParB to find the target given that it starts at some position y and in state i
where i = 1, 2. It must satisfy the backward Chapman-Kolmogorov differential equations (Bénichou et al., 2005), which reads

D
𝜕2t(y, 1)
𝜕y2

+ k4 [t(y, 2) − t(y, 1)] = −1,

v
𝜕t(y, 2)

𝜕y
+ k2 [t(y, 1) − t(y, 2)] = −1

(2)

with boundary conditions:
t(0, 1) = t(L, 1) = 0
t(0, 2) = t(L, 2).

(3)

After some computations (see Supplementary Material, Section 4), we obtain the explicit average time solution:

t(y, 1) = k4 + k2
k4k2

L
β − α

[
β2

1 − eαy

1 − eαL
− α2

1 − eβy

1 − eβL

]
− k2 + k4

k4
y
v

t(y, 2) = k2 + k4
k2k4

L
β − α

β2
1 − k2

vβ e
αy

1 − eαL
− α2

1 − k2
vα e

βy

1 − eβL

 −
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k4

y
v
− 1
k4

(4)

with α = 1
2

(
k2
v +

√︃
k22
v2 + 4 k4

D

)
and β = 1

2

(
k2
v −

√︃
k22
v2 + 4 k4

D

)
.

We next calculate ParB’s average speedV given that it starts at the old pole y = 0 and at advective state n = 2 asV = L
t (0,2) .

Since we are interested in the qualitative trend of the average arrival speed as a function of a single parameter while the rest is kept
same as baseline values shown in Figure 11(D), we scale all the speeds in our results with their maximum value.

We note that most of the parameter values could be kept within the range of the values used for the computational model
simulations with the exception of k2 which had to be slightly varied; this is to be expected since this is only a minimal model and
many other reactions have been omitted. However, the analytic velocity solution bears remarkably similar qualitative behavior as
in the computational model simulations. In particular, in Figure 11(B), we see that the ParB velocities follow a non-monotonic
growth trendwith respect to the hydrolysis rate k4 (comparewith Figure 6(B)). This is in agreementwith our computationalmodel
results and it supports our findings that there is an optimal hydrolysis rate that maximizes ParB velocities. In Figure 11(A)-(C) we
also observe that as k2 andDB increase, ParB’s average speed also increases and saturates quickly. These reduced model results are
in agreement with our computational model simulations and indicate that an intermittent search formalism is an appropriate
reduced modeling approach for this system.
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(A) (B)

(C) (D)

Figure 11: ParB average speed as a function of a single parameter using the reduced intermittent search model while the rest of
the parameter are kept at fixed values listed in Table in panel (D). (A) ParB speed as a function of diffusion coefficient. (B) ParB
speed as a function of hydrolysis rate k4. (C) ParB speed as a function of ParA conversion rate k2.

3.3 Establishment of bipolar MipZ concentrations
In this section, we return to the computational stochastic model. The new component here is that we add all MipZ reactions to
ParA/ParB/PopZ reactions that were previously examined separately in Section 3.1. Our goal is to use the model to probe how the
possibly competing relationship between ParA andMipZ for ParB binding sites could guide correct bipolar MipZ localization.
Since the reactions are now quite complicated, we follow a step by step systematic procedure to evaluate howMipZ and ParA
could be interacting with moving ParB complexes.

MipZ bipolar concentration with forced ParB binding saturation. In previous experimental studies, MipZ bipolar
concentration is established after ParB is anchored at the new pole for some time (Schofield et al., 2010). During this time ParA
also accumulates preferentially at the new pole (Schofield et al., 2010), so we are interested in exploring how the interactions
between ParB, ParA and MipZ might affect MipZ dynamics. Specifically, since MipZ and ParA both compete for the same
binding sites on ParB it is possible that binding site competition can significantly affect MipZ accumulations. As a first step, we
test this competition hypothesis by simulating ourmodel without ParA andmanually changing the total number of available ParB
binding sites that MipZ can bind. Since MipZ gradient does not peak at the two poles until the mobile ParB copy is anchored, we
also simulate our model by initializing with two anchored ParB complexes at each pole. This allows us to directly test the role of
ParB binding sites onMipZ polar accumulations.

In Figure 12(A) we show averagedMipZ profiles along the long cell length (x-axis) in simulated cells (n = 50) without ParA
and different numbers of ParB binding sites between an old pole associated and new pole associated ParB. To keep in line with
experimental measurements, our computed profiles are averaged in time (250 time points) and then each time-averaged profile is
averaged over 50 independent cell simulations. In Figure 12(B) we show two computedMipZ gradient quantities: meanMipZ
midpoint position andMipZ peak ratio. On the x-axis we show the binding capacity ratio for ParB. A quadratic fit was applied to
the time averaged MipZ profiles of each cell in order to estimate the minimum center position of a MipZ profile and then results
were averaged over 50 trials to produce the meanMipZ midpoints. We record the minima as rescaled quantities by reporting
the ratio between the distance from the minimum position to the old pole over total cell length. TheMipZ distribution peak
ratio was measured as the fraction between the new to old pole peaks of the fitting curve for eachMipZ profile with a ratio of
1 indicating a perfectly symmetric distribution with two equal peaks. We plot the mean minimum positions and peak ratios
against a binding capacity ratio which measures the available binding sites for MipZ at the new and old pole ParB respectively.
For example, in Figure 12(B), 4:2 binding means that there are 4 binding sites available for MipZ at the old pole and there are 2
binding sites available for MipZ at the new pole ParB. In Figure 12(C) we show averagedMipZ profiles against cell length for
both a wild-type cell (baseline parameters) and a mutant ΔtipN cell where there are equal amount of PopZ for both poles.

From the averaged profiles and computedmidpoints and peak ratios in Figure 12(A)-(B), we observe theMipZ concentrations
transitions from a symmetric to asymmetric conformation as the number of ParB binding sites becomes more different between
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Figure 12: MipZ averaged profile in a cell without ParA. (A) Simulated average MipZ distributions (n = 50), fixing 4 binding
sites at the old pole, varying at the new pole. (B) Error bar plot of the relativeMipZ distributionminimum position (blue) and the
ratio between 2 peaks (orange) as the function of the number of binding sites between ParB at the new and the old pole (n = 50).
(C) Simulated average MipZ distribution (n = 50) in wild type (4 binding sites at the old pole and 3 at the new pole) and in
ΔtipN (4 binding sites in both poles). All parameter values can be found from Table.1. Initially, there are 900MipZ monomers.

the two ParB complexes. Specifically, as the binding capacity of ParB at the new pole decreases (i.e.,manual new pole ParB
saturation), the minimumMipZ position in Figure 12(B) (blue curve) increases from 50% to close to 80% (of the cell length) and
the peak to peak ratio inMipZ concentration decreases from 100% to about 20%, Figure 12(B)(red curve). This indicates that
MipZ gradient becomes more asymmetric as the new pole ParB becomes saturated.

In Figure 12(C) we simulated scenarios akin to the measurements in (Schofield et al., 2010) for averagedMipZ profiles of
wild type vs ΔtipN mutant cells. TipN is a polar protein that has been shown to directly bind and interact with ParA monomers
(Schofield et al., 2010) creating a condensed ParA accumulation at the new pole. It has also been observed that in ΔtipN cells,
MipZ distribution along the cell has an average minimum position shifted toward the old pole while in wild type cells, the minima
is biased toward the new pole. In our model, a ΔtipN cell is one that has equal binding potential for ParA between the two poles.
From the average profiles in Figure 12(C), we observe a shift in minimum position from <49% to about 60%mark as the binding
capacity in the new pole increases. Our results support a scenario in which the difference inMipZ distribution between wild type
and ΔtipN mutant cell is due to the ratio between ParB binding capacity at the new pole versus the old pole. When both ParBs
have the same binding capacity, MipZ distribution’s average minimum position shifted toward the old pole. When this binding
capacity at the new pole is less than in the old pole, MipZ’s minimum position bias toward the new pole as seen in wild type cells.
Our results are in full agreement with the data of Schofield et al. (2010).

Finally, we note that our model in this case explicitly tested ParB capacity by manually altering the number of binding sites
in each anchored ParB, next we investigate whether ParA reactions are sufficient to mediate a transition between symmetric to
asymmetric MipZ profiles by competing for ParB sites.

MipZ bipolar concentration with ParA saturation of ParB binding. Next, we re-introduce ParA in the cell in
order to test whether the ParB binding site saturation we manually imposed before could be obtained through competition
between ParA dimers andMipZ monomers. Similar to the previous set up we keep both ParBs anchored at the respective poles,
but this time we keep them at the same binding capacity of four binding sites that can be occupied by either ParA or MipZ. We
initialized the system with 300 ParAmonomers and 900MipZmonomers uniformly distributed along the cell. Since we have
already observed that ParA gradient is affected by the imbalance of PopZ between the old and new pole, here we examinedMipZ
profiles for various numbers of PopZ at the new pole, while keeping the old pole fixed at 1 PopZ. We show average MipZ relative
minimum position and peak-to-peak ratios in Figure 13(A).

When there is no PopZ at the new pole, the relative minimumMipZ position was below 50% and the peak-to-peak ratio was
slightly greater than 1, Figure 13(A). As the PopZ ratio increases, the relative minimum position increases and it asymptotically
approaches the mark of 60% of cell length. On the other hand, the peak to peak ratio decreases from an equal peak setup (peak
ratio 1) to asymptotically approaching the asymmetric 0.6 peak ratio, Figure 13(A). We note the similarity between these results
and the results in Figure 12(B) where the new pole binding sites were manually decreased; this indicates that the increasing of
new pole accumulation of ParA also results in a fast saturation of ParB sites, which in turn can lower the access of MipZ to ParB
binding sites. To test whether this saturation effect is the result of any differences between ParA binding affinity and MipZ
binding affinity, in Figure 13(B) we recompute the meanMipZ peak positions and peak ratios as the values of ParB-MipZ reaction
rate k11 are varied. We note that there is a wide range of k11 values that does not seem to affect the MipZ profiles, indicating that
at the new pole ParA can dominate occupancy of ParB complex binding sites over a wide range of MipZ binding rates.
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Figure 13: SimulatedMipZ time average distribution (n = 20) in cells with ParA, varying the number of polar PopZ at the new
pole and k11. All parameter values can be found from Table 1 and the old pole is kept to have only 1 PopZ. (A) Plot of MipZ
distribution relative minimum position (blue) and ratio between the two poles (red) when varying the number of polar PopZ at
the new pole, k11 = 1 is used in this study. (B) Same as panel (A) for various values of k11 = 0.1, 1, 10.
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Figure 14: MipZ profile in a whole cell cycle including all the ParA proteins reactions. (A) Simulated ParB trajectory in wild
type cell where there is 1 polar PopZ at the old pole and 20 polar PopZ at the new pole. (B) Simulated ParB trajectory in ΔtipN
where there are 1 polar PopZ at each pole. All parameters can be found in Table 1, initially there are 300 ParA monomers and 900
MipZ monomers uniformly in the cell, 1 PopZ at the old pole and both ParBs are kept at the same binding capacity.

MipZ bipolar concentration formation in a full dividing cell model. Finally, we revisit the full system including all
the ParA proteins reactions in wild type and ΔtipN cell with all the MipZ reactions. Similar to the previous set up, we initialize
the system with 300 ParAmonomers and 900MipZmonomers uniformly distributed along the cell. In this set-up, we allow
both ParBs to start at the old pole, one of which is anchored and the other is free to move. They both are kept at the same binding
capacity of only two binding sites that can be occupied by either ParA or MipZ (note that we lower the binding capacity here in
the interest of reducing total simulation time).

The kymographs in Figure 14 show ParB complexes andMipZ in a wild type and ΔtipN cell simulations. We note that ParB
experienced less reversals in new-pole directed movement in wild type than in the ΔtipN cell, in agreement with data (Ptacin
et al., 2010; Schofield et al., 2010).

3.3.1 Connecting MipZ gradient with FtsZ ring placement: a minimal model

The correct positioning of the division plane where FtsZ (or Z) ring polymerizes is a prerequisite for the generation of daughter
cells inCaulobacter. Indeed,MipZ is the only known spatial regulator of FtsZ localization inC. crescentus (Sundararajan andGoley,
2017) as MipZ is hypothesized to directly interfere and restrict the formation of FtsZ ring until chromosome segregation has
initiated. Furthermore, wild type cells show precise off center Z-ring localization (Schofield et al., 2010; Meier et al., 2017) with
small fluctuations. From ourMipZ simulations in this section, we also observed that the mean minimumMipZ concentration
profile moved closer to mid-cell for ΔtipN mutants; we were curious whether at the single cell level it might be possible to detect
differences in MipZ accumulation sufficiently in order to produce different Z-ring localizations in the case of wild type versus
mutant cells.

Since it is hypothesized that MipZ dimers directly inhibit FtsZ ring formation (Kiekebusch et al., 2012), here we explore
how a simple MipZ repulsion model might affect FtsZ ring placement. For this purpose, we write a simple repulsion model,
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Figure 15: Z-ring placement probability density function derivation from the time average MipZ distribution in a single cell
level in both wild type and ΔtipN cell. (A) Single cell simulationMipZ distribution in wild type (with 1 PopZ at the old pole and
20 PopZ at the new pole) and ΔtipN (with equal PopZ at both poles). (B) Probability density for the Z ring placement in wild
type (green) and in ΔtipN (blue). All simulation parameters can be found in Table 1. Initially there are 300 ParA monomers and
900MipZ monomers are placed uniformly in the cell and both ParBs are kept to have equal binding capacity.

where we postulate that the center of mass of the Z-ring is determined by minimizing an energy function that corresponds to
MipZ profiles at any point in time,M (x, t), which can be estimated by fitting our computational model results for MipZ dimer
profiles. We write a Fokker-Planck equation for the probability density of finding the position of Z-ring center of mass x at time
t, Z(x, t) as follows,

𝜕Z(x, t)
𝜕t

= − 1
η
𝜕

𝜕x
[M ′(x, t)Z(x, t)] + DZ

2
𝜕2

𝜕x2
Z(x, t) (5)

whereM ′(x, t) denotes the derivative with respect to x and η is an affective drag coefficient for the ring. We assume that Z-ring
diffuses with an effective coefficient DZ and it advects proportional to MipZ concentration gradient. We did not explicitly
estimateM (x, t). Instead, we solve for the stationary solution of the above model with no flux boundary conditions at the two
poles given by:

Z(x) = C exp
(
Mi (x)
kBT

)
(6)

where kB is the Boltzmann constant and C is a normalization constant. Mi (x) is the time-average steady state concentration
obtained from fitting a continuous function to our computational model results over 250 time points after both ParB are
anchored at the two poles, shown in Figure 15(A) (indexed by model setup cases i = wild type, i = ΔtipN). We next compute
the Z-ring positioning probability profiles for single cells both for wild type and ΔtipN cells in order to compare any potential
consequences of the MipZ profile at the single cell level, which is where the decision for precise Z-ring placement must be made.

Figure 15(A) shows the time averagedMipZ profiles for a single wild type cell,Mwild (x), and aΔtipN cell,MΔtipN (x), which
we then use to compute the FtsZ probability distributions in Figure 15(B). We note a significant overlap between wild type and
ΔtipN Z-ring localization probabilities. This indicates that if we assume a simple MipZ repulsion model for FtsZ ring polymers,
then the ring positioning could overlap in both wild type and ΔtipN mutants at the single cell level; thus potentially weaken
the differences seen at the population level in Z-ring positioning based on observedMipZ concentration minima reported of
Schofield et al. (2010). Furthermore, even at the single cell level we note that the MipZ concentrations tend to be rather shallow,
thus likely to produce more diffuse Z-ring localization even when the MipZ concentration profile shows a minimum off the cell
center- this observation stands in contrast to the narrow distribution of Z-ring positioning that Meier et al. (2017) observed in
wild type C. crescentus cells. These results indicate that the relationship betweenMipZ and FtsZ ring components might be more
complicated than simple repulsion and should be explored more closely.

4 Discussion
In this paper we have constructed a computational and minimal PDEmodels that use a gradient driven diffusion mechanism
to generate persistent movement of a ParB partition complex in dividing C. crescentus cells. We first developed a detailed
computational model that captured all relevant reactions. Our computational model includes some novel features that have
not been examined before. First, we implemented detailed dimerization ParA reactions in conjunction with nucleoid and polar
matrix binding in the cell. The inclusion of these reactions allowed us to test conditions for generation of directed movement
of the ParB complex copy from the new to the old pole, as observed in experiments. Second, our computational model also
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incorporatedMipZ reactions and their interactions with the Par proteins; this allowed us to explore various conditions under
which proper MipZ bipolar accumulation could occur both in wild type and mutant cells.

An important component of our computational model analysis was to apply global parameter sensitivity techniques in order
to probe model response regimes using published parameter ranges. We were able to predict the parameter regions that produced
different motility modes of the partition complex and ranked parameters in order of sensitivity. We found this approach to be
important on two fronts. First, there is a wide range of parameters that appear in the modeling literature and various outcomes
have been reported when using different parameter ranges so it is important to systematically explore parameter space. Second
in the context of stochastic models in cell biology invariably a large set of parameters are needed in order to simulate so it is
important that their effects are carefully studied besides presenting results that best match the available data, which many times
can be limited.

From our parameter sensitivity analysis we found the ParB-induced hydrolysis rate of ParA, k4, to be of critical sensitivity in
the context of generating directed ParB movement. The reason for this is that although ParA gradient can provide significant
guidance to a partition complex, low hydrolysis rates increase the time it takes for ParB to release ParA off the nucleoid thereby
weakening the ability of the complex to read variations in local concentrations of ParA. Indeed, in the model (Lim et al., 2014)
ParB complexes were unable to generate sustained directed movement despite an effective gradient condition imposed on ParA;
our model could recoup similar behavior in ranges of low rate of ParA hydrolysis. We note that in (Lim et al., 2014) the observed
lack of directionality was the impetus for proposing that elastic DNA connections were necessary in order to generate ParB
movement. Our model instead indicates that diffusion can be sufficient to move ParB up a new pole-generated ParA gradient
within a wide range of parameter values. Indeed, other diffusion driven models such as the one fromHu et al. (2015, 2017) have
proposed similar mechanisms, however in their treatment both cell geometry and ParA reactions were not included. In addition
to hydrolysis rates, the value of ParB diffusion coefficients seems to affect differences in model outcomes for Lim et al. (2014)
versus Hu et al. (2015, 2017). In our analysis we found that low diffusion coefficient rank as high sensitivity only when the rates
ParB-induced ParA-ATP hydrolysis are slow and are otherwise not as important if ParB is efficient at burning ATP and thus
reading the ParA gradient. These results are in agreement with a mechanism for which movement directionality for ParB can be
thought as the result of a combination of efficient ParA hydrolysis with a sufficient new pole directed gradient. Overall, we find
that systematic parameter explorations can be of tremendous help when testing model behaviors at the sub-cellular scale.

Although the computational model provided a comprehensive reaction network including ParA, ParB, PopZ, MipZ, it is
rather complex and computationally expensive to simulate. Combining the insight from the computational model results and
the parameter sensitivity analysis, we were able to construct a minimal intermittent-search model (Bénichou et al., 2005, 2011),
which relied on only four most sensitive parameters for predicting ParB motility. We could fully solve this model analytically and
we showed that this reduced formulation may be the simplest model that can capture the complex dynamics of ParB movement
toward the new pole in the presence of ParA clouds. We anticipate that this framework could be a productive approach in this
setting and that might be worth exploring further for more complicated cellular setups (for example including cases in which
ParB experiences bidirectional movement that depends more explicitly on ParA concentrations).

We also used the computational model to probe the ability of polar PopZ complexes to affect partition complex segregation
through interactions with cytoplasmic ParA monomers. We observed sporadic ParB complex movement reversals when adjusting
the number of polar PopZ at the two poles and the number of ParA in the cell. In our model, PopZ polar protein numbers can
be adjusted to incorporate new pole landmark protein TipN effects in the cell. In simulated ΔtipN cells with overproduction
of ParA, ParB complexes experienced loss of directionality and frequent direction reversals in agreement with experiments of
Schofield et al. (2010); however, in contrast to experimental observations we did not observe oscillatory ParA localization and
ParB movement between the two poles in conditions of significant ParA overexpression, as has sometimes been observed in
experimental conditions (Schofield et al., 2010). This finding stands in agreement with results of Shtylla (2017) where oscillatory
ParB regimes were only observed in the presence of cytoplasmic PopZ complexes; cytoplasmic PopZ complexes were proposed as
an important factor in segregation by Laloux and Jacobs-Wagner (2013), however their reaction dynamics with ParA are still not
well understood and as such were not included in our model. Taken together these findings indicate that polar saturation is not
sufficient to generate oscillatory patterns in C. crescentus cells. We also observed that even in conditions of ParA overexpression,
slight differences in PopZ protein concentrations at each pole were sufficient to produce some directed movement of ParB
complexes, indicating that even weak polar gradient of ParA can be sufficient to guide a ParB complex to a pole. Overall our
results are in agreement with data of Schofield et al. (2010) and Ptacin et al. (2010, 2014) that indicate that a new pole directed
gradient generated by increased ParA monomer capture and re-dimerization at the new pole in the presence of PopZ and TipN is
sufficient generate directed ParB movement.

Our computational model was also used to explore the interactions betweenMipZ and Par proteins in order to get insight
into howMipZ bipolar concentrations are formed and coordinated with chromosome segregation. MipZ gradient are a central
signaling component for proper FtsZ ring placement at the cell division plane inC. crescentus. Our results indicate that competition
for limited binding sites on ParB complexes is sufficient to generate asymmetric MipZ bipolar distributions with midpoints
closer to the new pole. This asymmetry is achieved thanks to preferential accumulation of ParA at the new pole which in turn
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competes for ParB binding sites as the ParB complex translocates to the new pole. Our simulations also showed that increasing
PopZ protein presence at the new pole led to higher numbers of ParA dimers the new pole created more asymmetric MipZ
concentration profiles with the relative minimum position biased toward the new pole.

Finally, we examined using a reduced PDE model whether MipZ concentrations at the single cell level were sufficient to
control Z-ring localization. MipZ is the only known spatial regulator of Z ring formation due to its inhibitory reaction to FtsZ
ring components. Our results show that the simulated MipZ concentration in wild type is rather shallow and thus likely to
produce diffuse Z-ring localization which stands in contrast to the narrow distribution of Z-ring reported byMeier et al. (2017).
Our results also showed a significant overlap in Z-ring localization probabilities between wild type and mutant cells. Taken
together, our results indicate that a simple MipZ profile signal may be insufficient to control Z-ring placement near the middle of
the cell. Thus, we suggest that there may be other mechanisms in C. crescentus beside MipZ bipolar concentration that enhance
the precision in Z-ring placement during the cell division that should be explored more closely.

In conclusion, we have constructed models that incorporated ParA, ParB, PopZ andMipZ dynamics in order to explore
the asymmetric division events in C. crescentus. Our model results are in agreement with various experimental observations and
the modeling framework can be used to probe various proposed mechanisms that affect cell division. While we were able to
incorporate many known mechanisms in our model, there are of course a series of items that could be further incorporated
particularly once more data becomes available. First, we did not incorporate potential elastic connections between ParB and
ParA, mainly in interest of simplicity since our focus was on creating a framework in which both chromosome segregation and
division plate placement reactions could be studied together. We note however, that our results are in line with a diffusion driven
mechanism proposed by Hu et al. (2015, 2017) and our results agree despite the lack of detailed elastic connection modeling for
ParB. In addition, much more work remains in the elucidation of the role of cytoplasmic PopZ, and more detailed interactions
between FtsZ components andMipZ and how these interactions result in precise positioning of the Z-ring. These are issues that
we intend to pursue in future work.
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