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ABSTRACT
A mathematical model is presented to study the effects of phagocytes and inflam-
matory cytokines on bone fracture healing during the early stages of the process.
The model incorporates the interactions among macrophages, mesenchymal stem
cells, osteoblasts, inflammatory cytokines, and the cartilage and bone extracellular
matrices. The resulting system of nonlinear ordinary differential equations is studied
analytically and numerically. The stability analysis revealed that the excessive ac-
cumulation of phagocytes and inflammatory cytokines at the injury site can lead to
unsuccessful fracture healing, while the numerical simulations showed that optimal
healing depends on the abilities of phagocytes to efficiently engulf debris. A variety
of numerical simulations are also presented to monitor the healing of a broken bone
under different biological conditions, suggesting multiple possible ways to guide clin-
ical experiments and factors that can be manipulated to achieve optimal outcomes.
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1 Introduction
Worldwide, more than 8.9 million fractures occur every year a�ecting 50% of women and 25% of men over the age of 50 (Loi

et al., 2016; Pisani et al., 2016). Furthermore, 10–15% of these fractures either do not heal or take longer to heal (Gómez-Barrena

et al., 2015). Also, the risk of impaired healing increases as the immune system functions weaken in patients of advanced age

and with severe traumas (Gibon et al., 2017; Mangum et al., 2019; Recknagel et al., 2013). In addition, common clinical con-

sequences of unsuccessfully healed fractures include prolonged hospitalization, rehabilitation, and disabilities, which result in

high socioeconomic costs (Carlier et al., 2015; Loi et al., 2016). Immune cells, most importantly macrophages, have been identi-

�ed as key regulators of the bone fracture repair process (Baht et al., 2018; Sinder et al., 2015). Reduced number ofmacrophages

during the in�ammatory response results in delayed union (Schlundt et al., 2018). However, systemic and high concentration of

in�ammatory cytokines delivered from the immune system restricts bone formation (Baht et al., 2018; Loi et al., 2016;Mangum

et al., 2019; Schell et al., 2017). It has also been suggested that the de�ciency in phagocytosis is a main contributing factor to

unsuccessful healing (Elliott et al., 2017; Sinder et al., 2015). Yet, the role of the immune system cells in bone fracture healing

has not been clearly understood (Baht et al., 2018; Pajarinen et al., 2019;Wu et al., 2013) and is an area of increasing interest not

only in tissue regeneration but also in the treatment of autoimmune diseases (Elliott et al., 2017; Michalski et al., 2016; Sinder

et al., 2015).

Mathematical models have been widely used in bone fracture healing to gain insights into the most fundamental aspects

of bone formation (Ghiasi et al., 2017; Pivonka and Dunstan, 2012; Trejo and Kojouharov, 2019; Trejo et al., 2019a). Some of

the �rst mathematical models that attempted to study the immune system involvements in the early stages of the bone fracture

healing process were developed inKojouharov et al. (2017) andTrejo et al. (2019b). InKojouharov et al. (2017), a systemof non-

linear ordinary di�erential equations was introduced to study the interactions among debris, macrophages, mesenchymal stem

cells (MSCs), osteoblasts, pro- and anti-in�ammatory cytokines, cartilage, and bone tissue. The mathematical �ndings revealed

that the successful healing of a broken bone depends only on the bone cells’ proliferation and di�erentiation rates. Further-
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more, the numerical simulations revealed that high concentrations of pro-in�ammatory cytokines negatively a�ect the healing

time of a fracture while the administration of anti-in�ammatory cytokines can accelerate it in a dose-dependent manner. The

model in Kojouharov et al. (2017) was subsequently extended, in Trejo et al. (2019b), by incorporating the two distinct pop-

ulations of macrophages: the classically activated macrophages and the alternatively activated macrophages. Even though the

stability conditions obtained in Trejo et al. (2019b) for the long-term behavior of solutions were the same as in Kojouharov et al.

(2017), the numerical simulations with the new model revealed the macrophages’ importance in enhancing tissues production

through their ability to deliver pro- and anti-in�ammatory cytokines. The model also demonstrated that the success of treat-

ments with anti-in�ammatory cytokines depends heavily on debris densities. In addition, the numerical simulations showed

that the macrophages’ phagocytic rate drastically changes the short term tissues evolution. However, those mathematical mod-

els did not consider the important process of cellular migration due to pro-in�ammatory cytokines (Baht et al., 2018; Marsell

and Einhorn, 2011; Schmidt-Bleek et al., 2015) and also examined only speci�c phagocytic rates as functions of debris (M’Barek

et al., 2015; Van Zon et al., 2009). In this paper, the models developed in Kojouharov et al. (2017) and Trejo et al. (2019b) are

further modi�ed to carefully study the e�ects of phagocytes and in�ammatory cytokines on bone fracture healing during the

in�ammatory and repair phases of the process, which have an elapsed time occurring about 21 days after initial fracture (Ein-

horn and Gerstenfeld, 2015; Trejo et al., 2019b). The inhibitory e�ects of anti-in�ammatory cytokines on pro-in�ammatory

cytokines production are incorporated by imposing maximal cellular densities and modeling cells migration to the injury site

as proportional to the pro-in�ammatory cytokines concentration up to a maximal constant rate. This approach directly ac-

counts for the process of cellular migration being due to molecular factors (Arango Duque and Descoteaux, 2014; Italiani and

Boraschi, 2014) rather than necrotic cells. The new model also explicitly incorporates the migration of MSCs during the early

stage of bone fracture healing (Baht et al., 2018; Einhorn and Gerstenfeld, 2015; Marsell and Einhorn, 2011; Ullah et al., 2013).

In addition, the engul�ng rate is modeled with a generic function that depends on the debris concentration, which generalizes

the properties of di�erent mathematical phagocytic rate expressions proposed in the literature (Dunster et al., 2014; Gesztelyi

et al., 2012; M’Barek et al., 2015; Reynolds et al., 2006; Trejo et al., 2019a,b).

The organization of the paper is as follows: Section 2 discusses the cellular and molecular interactions that occur during

the bone fracture healing process. The simplifying assumptions are presented in Section 3, while the corresponding system of

nonlinear ordinary di�erential equations is introduced in Section 4. The newmodel is theoretically analyzed in Section 5, where

the stability, bifurcation, and sensitivity analyses of the system are presented. Numerically simulations that demonstrate the

functionality of the model under di�erent biological conditions are performed in Section 6. The paper concludes, in Section 7,

with a discussion of mathematical and biological observations.

2 Biological Background
Bone fracture healing is a complex regenerative process which can be described in three characteristic phases: in�ammatory,

repair, and remodelling (Ghiasi et al., 2017; Pivonka and Dunstan, 2012). During the in�ammatory phase, damaged tissue and

necroses of cells deliver a variety of in�ammatory mediators, such as the tumor necrosis factor-α (TNF-α) and interleukin-1

(IL-1), which activate and stimulate cellular migration toward the injury site (Marsell and Einhorn, 2011; Pajarinen et al., 2019).

Local and migrating immune cells, including neutrophils, monocytes, and macrophages, control and resolve the in�ammation

by engul�ng debris and down-regulating the in�ammatory cytokines production (Italiani and Boraschi, 2014;Mountziaris and

Mikos, 2008; Schmidt-Bleek et al., 2015). During the repair phase, resident and migrating MSCs proliferate and di�erentiate

into �broblasts, osteoblasts, and chondrocytes (Pajarinen et al., 2019). These cells proliferate and synthesize di�erent types

of collagen and proteins that in a process of mineralization result into �brocartilage and woven bone (Bailon-Plaza and Van

Der Meulen, 2001; Echeverri et al., 2015; Pajarinen et al., 2019). During the last phase, the two tissues are constantly removed

and replaced by a functional bone (Einhorn and Gerstenfeld, 2015). This process is referred to as bone remodeling and consists

of systematic tissue degradation and production by osteoclasts and osteoblasts, respectively (Marsell and Einhorn, 2011).

The di�erent biological processes involved in bone fracture healing overlap and occur at di�erent time scales (Gómez-

Barrena et al., 2015). Under normal biological conditions, in�ammation is usually resolved within the �rst two weeks of the

healing process (Einhorn, 2005), as debris are eliminated, in�ammatory cells emigrate to the lymphatic nods to die, and resi-

dent macrophages and in�ammatory molecules return to their baseline concentrations (Marsell and Einhorn, 2011; Ricciotti

and FitzGerald, 2011; Serhan and Savill, 2005). The repair phase starts around 3 days after injury, as �brocartilage and woven

bone are synthesized (Bailon-Plaza and Van Der Meulen, 2001). Finally, bone remodeling occurs, as osteoclasts populate the

repair site and start removing the callus (Einhorn, 2005; Marsell and Einhorn, 2011). Bone remodeling is a slow process that

can take months to years until the bone completely recovers to its pre-injury state (Einhorn and Gerstenfeld, 2015; Marsell and

Einhorn, 2011). Conventionally, if a fracture is not healed after 4 months, it is considered a delayed union, while if the healing

process has stopped completely within the �rst 6 months after the trauma without obtaining a functional bone, it is considered

a nonunion (Gómez-Barrena et al., 2015; Pivonka and Dunstan, 2012). Speci�c radiological diagnoses are required to clearly

distinguish between the two negative healing outcomes and in both cases either surgical interventions or drug administrations
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Figure 1: Flow diagram for the in�ammatory and repair phases of the bone fracture healing process: Debris (D) and

macrophages (M) release tumor necrosis factor-α (Tα), which is represented by dashed arrows. Tα activates the migration of

M and MSCs (Cm), which is represented by compound arrows, inhibits cellular proliferation and di�erentiation (dotted-dot-

ending arrows) and decays (solid arrows).M engulf debris and emigrate (solid-dot ending and solid arrows). Cm and osteoblasts

(Cb) proliferate and di�erentiate (circular-solid and solid arrows). The cartilage (mc) and the bone (mb) are synthesized by Cm
andCb (dashed arrows), respectively. Themc is degraded by the osteoclasts (dashed-dot-ending arrow), which are assumed to be

proportional to Cb.

are needed in order to achieve successful repair (Bailon-Plaza and Van Der Meulen, 2001; Gómez-Barrena et al., 2015).

3 Modeling Assumptions
The most important e�ects of the phagocytes and in�ammatory cytokines on bone fracture healing are observed during the

in�ammatory and repair phases of the healing process (Kojouharov et al., 2017; Schlundt et al., 2015; Trejo et al., 2019b). The

healing process initiates with an acute in�ammatory response characterized by immune cellular recruitment and the delivery

of high concentrations of in�ammatory mediators (Einhorn and Gerstenfeld, 2015; Trejo et al., 2019b). Then the modulation

of in�ammation and restoration of the homeostatic state occurs, as cellular migration, proliferation, di�erentiation and tissue

production and degradation take place.

Modeling assumptions provide a way to simplify the complex processes involved in bone fracture healing, while preserving

the important features of the system, which makes the resulting model both biologically realistic and mathematically tractable.

In this paper, we consider debris (D), macrophages (M), MSCs (Cm), osteoblasts (Cb), TNF-α (Tα), �brocartilage (mc), and
woven bone (mb), as the primary variables during the in�ammatory and repair phases of the healing process. Figure 1 illustrates

the �owdiagram for the two phases of the bone fracture healing process, where the cells and cellular dynamics are represented by

the circular shapes and solid arrows. The cytokines (Tα) concentration and its production/decay are represented by the octagonal
shape and dashed/solid arrows. Tα activation e�ects on the cellular recruitment are represented by the compound arrows, while

its inhibitory e�ects on cellular proliferation and di�erentiation are represented by the dotted arrows. The tissues densities and

their synthesis/degradation are represented by the rhomboidal shapes and dashed arrows. Removal of debris and the negative

e�ects among the variables are represented by the dot-ending arrows.

The healing process initiates with the delivery of pro-in�ammatory cytokines, modeled with Tα, and being produced byD
(Einhorn andGerstenfeld, 2015), where thedensity ofD is inproportion to thenecrotic cellular density (Kojouharov et al., 2017)

resulting after the trauma. Then Tα stimulates the migration and activation of macrophages andMSCs toward the healing site

(Baht et al., 2018; Einhorn andGerstenfeld, 2015;Marsell and Einhorn, 2011). Themigration rates aremodeled proportional to

Tα up tomaximal constant rates, kM and km, (Newman et al., 1982; Ullah et al., 2013) imposed by the inhibitory e�ects of anti-

in�ammatory cytokines (Italiani and Boraschi, 2014; Kojouharov et al., 2017; Trejo et al., 2019b). Macrophages engulf debris

and release Tα in response to their phagocytic activities (Italiani and Boraschi, 2014; Trejo et al., 2019b). MSCs proliferate and

di�erentiate toward �broblasts, chondrocytes, and osteoblasts which also proliferate and di�erentiate into osteocytes (Bailon-
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Table 1: Model variables and parameters.

Variable/Parameter Description Units

D Debris cells/mL

M Macrophages cells/mL

Cm MSCs cells/mL

Cb Osteoblasts cells/mL

Tα TNF-α ng/mL

mc Fibrocartilage g/mL

mb Woven bone g/mL

kd Macrophages phagocytic rate 1/day

aed Half-saturation of debris cells/mL

KlM Maximal macrophages density cells/mL

kM Migration rate ofM cells/ng/day

dM Emigration rate ofM 1/day

km Migration rate of Cm cells/ng/day

k0 Secretion rate of Tα byD ng/cells/day

kα Secretion rate of Tα byM macrophages ng/cells/day

dα Decay rate of Tα 1/day

apm E�ectiveness of Tα inhibition of Cm proliferation ng/mL

amb E�ectiveness of Tα inhibition of Cm di�erentiation ng/mL

apb E�ectiveness of Tα inhibition of Cb proliferation ng/mL

apm1
Constant enhancement of Tα to Cm proliferation ng/mL

kpm Proliferation rate of Cm 1/day

dm Maximal di�erentiation rate of Cm to Cb 1/day

kpb Proliferation rate of Cb 1/day

db Di�erentiation rate of Cb 1/day

pcs Fibrocartilage synthesis rate g/cells/day

qcd1 Fibrocartilage degradation rate mL/cells/day

qcd2 Fibrocartilage degradation rate by osteoclasts mL/cells/day

pbs Bone tissue synthesis rate g/cells/day

qbd Bone tissue degradation rate mL/cells/day

Klb Carrying capacity of Cb cells/mL

Klm Carrying capacity of Cm cells/mL

Plaza and Van Der Meulen, 2001). Fibroblast and chondrocyte densities are assumed to be in proportion to Cm density (Trejo

et al., 2019b). Therefore, Cm and Cb synthesizemc andmb, respectively (Bailon-Plaza and Van Der Meulen, 2001; Trejo et al.,

2019b), where mc is constantly removed by the osteoclasts, with the density of the osteoclasts being assumed proportional to

the density of the osteoblasts (Bailon-Plaza and Van Der Meulen, 2001).

In addition, both cellular migration and proliferation rates decrease linearly as the populations’ sizes approach a maximum

value, KlM , Klm, and Klb, forced by the limited resources of the environment and the anti-in�ammatory cytokines regulatory

e�ects (ArangoDuque andDescoteaux, 2014; Bailon-Plaza andVanDerMeulen, 2001;Newman et al., 1982; Trejo et al., 2019b;

Ullah et al., 2013). Tα also inhibit both Cb proliferation and Cm di�erentiation (Kojouharov et al., 2017; Trejo et al., 2019b).

However, low concentration levels of Tα increase Cm proliferation (Bastidas-Coral et al., 2016) while high levels of Tα restrict
Cm proliferation (Trejo et al., 2019b). Furthermore, it is assumed thatM increase in size only due to recruitment (Trejo et al.,

2019b), as there is no evidence that they proliferate during the healing of a broken bone (Swirski et al., 2014), and they emigrate

at a constant rate, dM , to the lymphatic nods to die (Serhan and Savill, 2005). There is no recruitment of osteoblasts (Ullah

et al., 2013; Bailon-Plaza and VanDerMeulen, 2001) and they remain at the healing site to continue with the remodeling phase

of the healing process (Bailon-Plaza andVanDerMeulen, 2001). Bone fracture healing is governed by the production ofmc and
mb (Bailon-Plaza and Van Der Meulen, 2001; Carlier et al., 2015), whose �nal levels are used to classify the healing outcome as

delayed or nonunion healing (Trejo et al., 2019b).
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4 Mathematical Model
The in�ammation and repair phases of the bone fracture healing process are modeled with a mass-action system of nonlinear

ordinary di�erential equations, where all variables represent homogeneous quantities in a given volume. The model variables

and parameters, including their corresponding units, are described in Table 1. Following the �ow diagram given in Figure 1 and

the modeling assumptions provided in Section 3 yields the resulting system of equations:

dD
dt

= −RDM︸︷︷︸
clearance of debris

(1)

dM
dt

= RM︸︷︷︸
migration

− dMM︸︷︷︸
emigration

(2)

dTα

dt
= k0D + kαM︸       ︷︷       ︸

production

− dαTα︸︷︷︸
degradation

(3)

dCm

dt
= Rm︸︷︷︸
migration

+AmCm

(
1 − Cm

Klm

)
︸               ︷︷               ︸

proliferation

− F1Cm︸︷︷︸
osteogenic

di�erentiation

(4)

dCb
dt

= AbCb

(
1 − Cb

Klb

)
︸             ︷︷             ︸

proliferation

+ F1Cm︸︷︷︸
osteogenic

di�erentiation

− dbCb︸︷︷︸
osteocytic

di�erentiation

(5)

dmc

dt
= (pcs − qcd1mc)Cm︸              ︷︷              ︸

production

− qcd2mcCb︸    ︷︷    ︸
degradation

(6)

dmb
dt

= (pbs − qbdmb)Cb︸              ︷︷              ︸
production

. (7)

Equation (1) describes the rate of change with respect to time of the debris density. It decreases proportionally toM, where

the phagocytic rate,RD = RD (D), is a function of the debris with the following properties (Gesztelyi et al., 2012):

• RD (x) > 0 for all x > 0, withRD (0) = 0; and

• RD (x) is a continuously di�erentiable function in [0,∞), withR′
D (0) ≥ 0.

Examples of such functions that have been widely used in various mathematical models include (Dunster et al., 2014; Gesztelyi

et al., 2012; M’Barek et al., 2015; Reynolds et al., 2006; Torres et al., 2019; Trejo et al., 2019b):

RD =

kd
aed

D, (8)

and

RD =

kdDn

aned +Dn , n ≥ 1. (9)

In Equation (8), the engulfment rate increases proportional to debris density while in Equation (9) the phagocytic rate saturates

for D large (Gesztelyi et al., 2012). Furthermore, the function provided in Equation (8) is written in a form that represents a

linear approximation of the function RD given in Equation (9) when n = 1. We use the general form of the function RD (x)
in the model analysis presented below, while we implement the speci�c forms given in Equations (8) and (9) with n = 1, 2 in

the numerical simulations as they have been widely used in other mathematical models (Dunster et al., 2014; Torres et al., 2019;

Trejo et al., 2019b).

Equation (2) describes the rate of change with respect to time of macrophages density. It increases because of migration and

decreases at a constant emigration rate. It is assumed that M migrate to the injury site proportionally to Tα up to a maximal
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constant rate, kM (Arango Duque and Descoteaux, 2014; Dunster et al., 2014; Italiani and Boraschi, 2014):

RM = kM
(
1 − M

KlM

)
Tα.

Equation (3) describes the rate of changewith respect to time ofTα, which increases due toD andM productions, and decreases

by degradation. Equation (4) describes the rate of change with respect to time of Cm. It increases by cellular migration and

division up to a constant-maximal carrying capacity, Klm, and decreases by di�erentiation (Bailon-Plaza and Van Der Meulen,

2001). The migration rate of Cm is modeled to be proportional to Tα up toKlm (Ullah et al., 2013):

Rm = km
(
1 − Cm

Klm

)
Tα.

The total MSCs proliferation rate is modeled by (Kojouharov et al., 2017; Sherratt andMurray, 1990; Trejo et al., 2019b):

Am = kpm ×
a2pm + apm1

Tα

a2pm + T 2

α
,

where in the absence of in�ammation, Tα = 0, Cm proliferate at a constant rate kpm. However, when there is in�ammation,

Tα > 0, the proliferation rate of Cm increases or decreases according to the concentration of Tα, i.e., high concentration levels

ofTα inhibitCm proliferation while low concentration levels ofTα accelerateCm proliferation (Bastidas-Coral et al., 2016). The

di�erentiation rate of Cm is inhibited by Tα, which is modeled by the following function (Kojouharov et al., 2017; Trejo et al.,

2019b):

F1 = dm × amb
amb + Tα

.

Equation (5) describes the rate of change with respect to time ofCb. It increases whenCm di�erentiate into osteoblasts or when

osteoblasts proliferate (Bailon-Plaza andVanDerMeulen, 2001). It decreases at a constant rate db when osteoblasts di�erentiate.
The osteoblasts proliferation rate is inhibited byTα, which is modeled by the following function (Kojouharov et al., 2017; Trejo

et al., 2019b):

Ab = kpb ×
apb

apb + Tα
.

Equations (6) and (7) describe the rate of change with respect to time of the �brocartilage and woven bone, respectively, where

pcs and pbs are the tissue constant production rates and qcd1, qcd2, and qbd are the tissue degradation rates (Bailon-Plaza and Van
Der Meulen, 2001; Trejo et al., 2019b).

5 Model Analysis
The analysis of Model (1)–(7) is done by �rst performing the stability analysis of the system, where the equilibria of the system

and their corresponding stability properties are studied mathematically. Each equilibrium provides a possible outcome of the

bone fracture healing process and its corresponding stability properties de�ne the conditions under which a particular healing

result occurs. Next, a bifurcation analysis on the equilibria is provided to support their properties and dependency on model

parameters. Finally, sensitivity analysis of the model is presented to identify the most in�uential parameters in the variability of

the bone fracture healing outcomes.

5.1 Stability analysis
Note that System (1)–(7) is well-posed and that all solutions remain within the state space, D ≥ 0,M ≥ 0, Tα ≥ 0, Cm ≥ 0,

Cb ≥ 0,mc ≥ 0 andmb ≥ 0, since the right-hand side functions of System (1)–(7) are continuously di�erentiable and bounded

(Stuart and Humphries, 1998). The analysis of Model (1)–(7) is done by �nding the equilibria, denoted by Ei (D,M,Tα,Cm,
Cb,mc,mb), i = 0, 1, 2, 3, and their corresponding stability properties. Setting the right-hand sides of the equations (1)–(7)

equal to zero yields the following four equilibria:

E0 (0, 0, 0, 0, 0,m∗
c0 ,m

∗
b0 ), E1 (0, 0, 0, 0,Klb (1 − db/kpb), 0, pbs/qbd),

E2 (0, 0, 0,Klm (1 − dm/kpm),C∗
b2 ,m

∗
c2 , pbs/qbd), E3 (0,M∗

,T ∗
α ,C

∗
m3

,C∗
b3 ,m

∗
c3 , pbs/qbd).

The biological meanings of the above equilibria are summarized in Table 2. The steady-state E0 represents an unsuccessful

healing outcome. In this case, the in�ammation is been resolved since debris, macrophages, and TNF-α densities are zero but
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Table 2: Biological meanings of the equilibria.

Equilibria Biological meanings

E0 nonunion with resolved in�ammatory response

E1 successful healing

E2 delayed or nonunion healing with resolved in�ammatory response

E3 delayed or nonunion healing with chronic in�ammation response

Table 3: Existence and local stability conditions of the equilibrium points.

Equilibria Existence Stability

E0 m∗
c0 ,m

∗
b0

≥ 0 kαkM < dαdM , kpm ≤ dm, kpb ≤ db
E1 kpb > db kαkM < dαdM , dm ≥ kpm
E2 kpm > dm kαkM < dαdM
E3 kαkM > dαdM always

the repair process has failed since the osteoblasts and osteoclasts have died out before the beginning of the remodeling process.

Hence, the tissue densities, m∗
c0 andm

∗
b0
, can be any two positive values smaller or equal than their maximal densities, pcs/qcd1

and pbs/qbd, respectively (see Theorem 1). The steady-state E1 represents a successful repair of the bone fracture, where the
in�ammation is resolved, the �brocartilage is completely removed, and the woven bone has achieved its maximal density. The

steady-state E2 represents a nonunion or delayed union, where the in�ammation is resolved but the osteoclasts have failed to

degrade the cartilage in a timely fashion. The steady-state E3 represents a nonunion or delayed union with a chronic in�amma-

tion, since even though debris are completely removed,D = 0, the macrophages and the TNF-α remain at the healing site and

the osteoclasts have failed to degrade the �brocartilage.

Table 3 summarizes the equilibria and their corresponding existence and stability conditions. The existence conditions of

each equilibriumpoint arise fromthe fact that all biologicallymeaningful variables arenon-negative. E0 exists for all non-negative
steady state tissue densities, i.e.,m∗

c0 ,m
∗
b0

≥ 0. E1 exists when osteoblasts proliferate faster than they di�erentiate, i.e., kpb > db.
E2 exists when the MSCs proliferation rate is bigger than their di�erentiation rate, i.e., kpm > dm. E3 exists when the in�ux

rates of macrophages and TNF-α are more than their out�ux rates, i.e., kαkM > dαdM . Similar biological interpretations of the

stability conditions can be made for each equilibrium point.

The stability of the equilibria is analyzed using the Jacobian of System (1)–(7) at each equilibrium point and �nding its

corresponding eigenvalues (Otto and Day, 2011). The following theorems hold for the general form of the phagocytic rate

functionRD (x) given above, and, in particular, for the speci�c forms given in Equations (8) and (9):

Theorem 1. Suppose that m∗
c0 ≥ 0 and m∗

b0
≥ 0. Then E0 (0, 0, 0, 0, 0,m∗

c0 ,m
∗
b0
) exists for all the parameter values and E0

belongs to the set B = {(0, 0, 0, 0, 0,mc,mb) : 0 ≤ mc ≤ pcs/qcd1 , 0 ≤ mb ≤ pbs/qbd}, which is a local attractor set of the solution
set given by System (1)–(7) if and only if kMkα < dαdM , kpm ≤ dm, and kpb ≤ db.

Proof. The elements of E0 are non-negative for all parameter values of themodel, hence E0 is a biologically feasible equilibrium.

Next, it will be proved that the hyperplane A = {(0, 0, 0, 0, 0,mc,mb) : mc ≥ 0,mb ≥ 0} is an attractor set of the solutions

of System (1)–(7). There are two cases to consider based on the relation between the cells proliferation and di�erentiation rates.

First, let us examine the case when kpm < dm and kpb < db. The Jacobianmatrix J (E0) is given by the following lower triangular
block matrix:

J (E0) =
©­«
J1 (E0) 0 0
J ∗
1

J2 (E0) 0
0 J ∗

2
J3 (E0)

ª®¬ ,
where

J1 (E0) =
©­«

0 0 0

0 −dM kM
k0 kα −dα

ª®¬ , J2 (E0) =
(
−dm + kpm 0

dm −db + kpb

)
, J3 (E0) =

(
0 0

0 0

)
,

and J ∗
1
, J ∗

2
are non-zero submatrices. Therefore, the corresponding characteristic polynomial associated with J (E0) is given by

the product of the characteristic polynomials associated with each submatrix (Strang et al., 1993):

p(λ) = λ3
(
λ2 + (dM + dα)λ + dMdα − kMkα

) (
λ + dm − kpm

) (
λ + db − kpb

)
.
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Hence, from Routh-Hurwitz criteria, n = 2, the eigenvalues of J (E0) are negative or have negative real part, for the variables
M, Tα, Cm, and Cb, and are equal to zero, for D, mc, and mb. Since D′(t) ≤ 0 for all the variables in the system (1)–(7) and

(D∗
, 0, 0, 0, 0,mc,mb) withD∗ ≠ 0 is not an equilibrium point, then the solutions of the system (1)–(7) are attracted to the set

A = {(0, 0, 0, 0, 0,mc,mb) : mc ≥ 0,mb ≥ 0}. Equations (6) and (7) imply thatm′
c ≤ 0 andm′

b ≤ 0 for allmc > pcs/qcd1 and
mb > pbs/qbd. Therefore, the set B is a local attractor set of A (Stuart and Humphries, 1998).

Next, let us consider the case when kpm = dm and db = kpb. Here, the eigenvalues of J (E0) are the same as above except

those associated with Cm and Cb, which are equal to zero. Therefore, in this case, considering the second order approximations

of the right hand sides of Equations (4) and (5), instead of just the �rst order approximations, and using similar arguments as

above, proves that the set B is a local attractor set of A. �

Theorem 2. The equilibrium E1 (0, 0, 0, 0,Klb (1 − db/kpb), 0, pbs/qbd) exists when kpb > db, and it is locally stable if and only
if kαkM < dαdM and dm ≥ kpm.

Proof. E1 is a biologically feasible equilibrium, since all the elements ofE1 are non-negative for all parameter values of themodel,

with kpb > db. Next, the Jacobian matrix corresponding to E1 is given by the following lower triangular block matrix:

J (E1) =
©­«
J1 (E1) 0 0
J ∗
1

J2 (E1) 0
0 J ∗

2
J3 (E1)

ª®¬ ,
where J1 (E1) has the same expression as J1 (E0), de�ned in Theorem 1, J ∗

1
and J ∗

2
are nonzero sub-matrices and

J2 (E1) =
(
−dm + kpm 0

dm db − kpb

)
, J3 (E1) =

(
−qcd2Klb (1 − db

kpb ) 0

0 −qbdKlb (1 − db
kpb )

)
.

Since dm ≥ kpm and kpb > db and all the eigenvalues of J1 (E0) are non-positive values, then all the eigenvalues of J (E1) are
all negative except the eigenvalues associated withD and Cm, when kpm = dm, which are equal to zero. Therefore, by applying
similar arguments provided in the proof ofTheorem 1when the eigenvalues are zero, it implies thatE1 is a locally stable node. �

Theorem 3. The equilibriumE2 (0, 0, 0,C∗
m,C∗

b ,m
∗
c , pbs/qbd), where C∗

m = Klm (1−dm/ kpm), m∗
c = pcsC∗

m/(qcd1C∗
m + qcd2C∗

b ),
C∗
b = Klb (kpb − db +

√︃
(kpb − db)2 + 4kpbdmC∗

m/Klb ) /2kpb, exists when kpm > dm and it is locally stable if and only if kMkα <
dαdM .

Proof. From the de�nition of E2, the elements of E2 are nonnegative for all parameter values of the model with kpm > dm.
Hence, E2 is a biologically feasible equilibrium. Next, the Jacobian matrix corresponding to E2 is given by the following lower
triangular block matrix:

J (E2) =
©­«
J1 (E2) 0 0
J ∗
1

J2 (E2) 0
0 J ∗

2
J3 (E2)

ª®¬ ,
where J1 (E2) has the same expression as J1 (E0), de�ned in Theorem 1, J ∗

1
and J ∗

2
are nonzero submatrices, and

J2 (E2) =
(
dm − kpm 0

dm −
√︃
(db − kpb)2 + 4kpbdmC∗

m/Klb

)
, J3 (E2) =

(
−qcd1C∗

m − qcd2C∗
b 0

0 −qbdC∗
b

)
.

Since kpm > dm, and all equilibrium variables and parameter values are positive, then all the eigenvalues of J1 (E2), J2 (E2), J3 (E2)
are negative except for the eigenvalue associated toDwhich is equal to zero. Following the same arguments applied in the proof

of Theorem 1 for the eigenvalue that equals to zero, it can be concluded that E2 is locally stable. �

Theorem 4. The equilibrium E3 (0,M∗
,T ∗

α ,C∗
m,C∗

b ,m
∗
c , pbs/qbd),whereM∗

= KlM (1− dMdα/kMkα), T ∗
α = kαM∗/dα, C∗

b =

Klb (A∗
b−db+

√︃
(A∗

b − db)2 + 4A∗
bF

∗
1
C∗
m/Klb )/2A∗

b , C
∗
m = Klm (A∗

m−F ∗
1
−R∗

m/Klm+
√︃
(A∗

m − F ∗
1
− R∗

m/Klm)2 + 4A∗
mR∗

m/Klm

)/2A∗
m, exists when kαkM > dαdM and it is locally stable. Here, A∗

m, A∗
b , F

∗
1
, and R∗

m represent the values of each corresponding
rate at T ∗

α , and m∗
c has the same expression as in Theorem 3.

Proof. From the de�nition of E3, the elements of E3 are nonnegative for all parameter values of the model. Hence, E3 is a
biologically feasible equilibrium. Next, the Jacobianmatrix corresponding to E3 is given by the following lower triangular block
matrix:

J (E3) =
©­«
J1 (E3) 0 0
J ∗
1

J2 (E3) 0
0 J ∗

2
J3 (E3)

ª®¬ ,



LETTERS IN BIOMATHEMATICS 179

Figure 2: Bifurcation diagram of System (1)–(7) for the steady state cartilage (m∗
c ) and bone (m∗

b) variables, as kpm is varied

from 0.1 to 3: solid lines represent stable states while dashed lines represent unstable states. E0 and E1 exist for all kpm values

while E2 exists when kpm > 1 = dm. E1 changes stability at kpm = 1 while E2 does not exist for values of kpm below 1.

where J3 (E3) has similar expression as J3 (E2) de�ned in Theorem 3, J ∗
1
and J ∗

2
are nonzero submatrices, and

J1 (E3) =
©­«
−M∗R′

D (0) 0 0

0 −kMkα/dα dMdα/kα
k0 kα −dα

ª®¬ , J2 (E3) =
(
−j1 0

F ∗
1

−j2

)
,

where

j1 =
√︃
(A∗

m − F ∗
1
− R∗

m/Klm)2 + 4A∗
mR∗

m/Klm and j2 =
√︃
(A∗

b − db)2 + 4A∗
bF

∗
1
C∗
m/Klb.

From these submatrices, it is easy to prove that all the eigenvalues of J (E3) are negative except for the eigenvalue associatedwithD
which is equal to zero whenR′

D (0) = 0. If this is the case, then following the same arguments applied in the proof of Theorem 1

for the eigenvalue that equals to zero, it can be concluded that E3 is locally stable. �

5.2 Bifurcation Analysis
The stability analysis revealed the dependence of the long-term dynamics of System (1)–(7) on its parameter values. Here, we

further study numerically the behavior of the system by looking at the bifurcation of each equilibrium point with respect to

speci�c key parameters, such as kpm and kM , which are varied in the biologically meaningful interval (0,∞), while �xing all
other model parameter values (Wiggins, 2003). Our goal is to understand the e�ects of perturbing the values of these two

parameters on the number and position of the steady states, which correspond to successful healing and delayed or nonunion

healing with and without chronic in�ammation responses.

Let us consider the case of resolved in�ammation, i.e., kαkM < dαdM , and the case of chronic in�ammation, i.e., kαkM >
dαdM . In the �rst case, the proliferation rate ofCm, kpm, is varied from 0.1 to 3 (1/day) and in the second case the migration rate

ofM, kM , is varied from 1 to 8 × 10
5
(cells/ng/day). The rest of the system parameters are set to their baseline values (Table 1).

In the �gures below, the steady state variables m∗
c and m∗

b of each equilibrium point are plotted, when they exist, while the

other steady state variables are omitted, since their qualitative behaviour is similar to the qualitative behaviour of the plotted

steady state variables. In addition, the steady state variablesm∗
c0 andm

∗
b0
for E0 are set to 0.1 (g/mL) as a representative example

(Theorem 1). Under these conditions, E1, the successful healing outcome, is always observed but its stability properties change

when perturbing the parameters (Theorem 2). In all the �gures, we refer to �brocartilage,mc, and woven bone,mb, as cartilage
and bone, respectively.

Figure 2 shows the bifurcation diagrams for the steady state of the variablesm∗
c andm∗

b for the equilibria E0 (black lines), E1
(blue lines) and E2 (red lines) in the case when kαkM < dαdM and kpm is varied (solid lines represent stable states while dashed

lines represent unstable states). In addition, in this case, E3 does not exist (Theorem 4), as kαkM = 0.415 < dαdM = 1.5476.

The bifurcation occurs at kpm = 1, where the stability of E1 changes: it is stable when kpm ≤ 1 = dm and it is unstable otherwise.

While E2 exits only when kpm > dm = 1. E0 always exits but it is unstable in the entire interval. The �gure suggests that if

the proliferation rate of Cm is greater than the Cm di�erentiation rate (kpm > 1 = dm) then E2 is observed. In this case, MSCs

and osteoblasts remain at the healing site, C∗
m2

,C∗
b2

> 0, where also �broblasts, chondrocytes, and osteoclasts are present, and

they constantly synthesize and degrade the �brocartilage, m∗
c2 , and the woven bone m∗

b2
, respectively. However, the healing

process results in a delayed or nonunion healing when the in�ammation is resolved, D∗
,M∗

,T ∗
α = 0, but the �brocartilage is

not completely removed,m∗
c2 > 0, from the repair site.

Figure 3 shows the bifurcation diagrams for the steady state of the variablesm∗
c andm∗

b for the equilibria E0 (black lines), E1
(blue lines) andE3 (red lines) in the casewhen kM is varied (solid lines represent stable stateswhile dashed lines represent unstable
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Figure 3: Bifurcation diagram of System (1)–(7) for the steady state cartilage (m∗
c ) and bone (m∗

b) variables, as kM is varied

between 1 to 8 × 10
5
: solid lines represent stable states while dashed lines represent unstable states. E0 and E1 exists for all kM

values while E3 exists when kM > dαdM/kα = 1.9× 10
5
. E1 changes stability at kM = 1.9× 10

5
, while E3 does not exit for values

of kM below 1.9 × 10
5
.

states). In this case E2 does not exist (Theorem 3), as kpm = 0.5 < dm = 1. The bifurcation occurs at kM = 1.9× 10
5
. Since E1 is

stable for values of kM below 1.9 × 10
5
and unstable for values above it, while E3 only exits when kM > 1.9 × 10

5
= dαdM/kα.

E0 always exits but it is unstable in the entire interval. The �gure suggests that increasing themigration rate the of macrophages,

kM , in a moderate fracture, above 1.9 × 10
5
, the healing process will result in a delayed or nonunion healing with a chronic

in�ammation stage, since in this case E3 is stable. Similarly as in the previous case, the MSCs and osteoblasts remain at the

healing site, C∗
m3

,C∗
b3

> 0, and they constantly synthesize and degrade �brocartilage,m∗
c3 , and woven bonem

∗
b3
. However, the

in�ammation is not resolved asM∗
3
> 0, T ∗

α3 > 0, and osteoclasts fail to remove the �brocartilage,m∗
c3 > 0.

5.3 Sensitivity Analysis
Global sensitivity analysis is performed to identify the most in�uential parameters of Model (1)–(7) in the variability of the

bone fracture healing outcomes. The eFAST (Extended Fourier Amplitude Sensitivity Test) method is implemented for the

parameter sensitivity analysis, since it is one of the most reliable techniques among the variance-based methods that return the

percentage variance of the model outputs given a set of parameters values (Marino et al., 2008). In eFAST, all parameters are

variedwithin speci�c ranges at the same time and the sensitivity indices are calculated. Themagnitude of the resulting sensitivity

indices determines the importance of the parameters on themodel variability outcomes (Marino et al., 2008; Saltelli et al., 1999).

To perform the parameter sensitivity analysis, three speci�c phagocytic rates are used: Equation (8), Equation (9)withn = 1,

and Equation (9) with n = 2, which are denoted by RD0, RD1, and RD2, respectively. All parameters are varied accordingly to

the speci�c ranges and baseline values de�ned in Table 4, assuming that they follow uniform distributions. The initial condition

for debris is set to D(0) = 5 × 10
7
and the rest of the initial conditions are set to zero. The sensitivity indices for each model

variable are calculated at day 21, which corresponds to the elapsed time for the in�ammatory and repair phases of the bone

fracture healing process (Einhorn and Gerstenfeld, 2015; Trejo et al., 2019b). Here, we only present and discuss the sensitivity

results for the �brocartilage and the woven bone densities,mc andmb, as these two quantities are used to classify the di�erent
bone fracture healing outcomes (Trejo et al., 2019b).

Figure 4 shows the individual contribution of each model parameter to the variance of each tissue density under the e�ect

of each phagocytic rate: RDi , i = 0, 1, 2. As it can be seen in the �gure, for all phagocytic rates, RD0, RD1, and RD2, the most

in�uential parameters to the variability of themodel outputs are the rates of cartilage production and degradation by osteoclasts,

pcs, qcd2, and the bone tissue degradation rate pbs. The rates pcs and qcd2 account for more than 20% of the total cartilage density

variance per each parameter, while pbs accounts for more than 50% of the total bone tissue variance, for all phagocytic rates.

6 Numerical Simulations
In this section, Model (1)–(7) is used to investigate the progression of the healing of a broken bone under di�erent biological

conditions. Table 4 summarizes the parameter values used in the numerical simulations, which have been estimated in a qual-

itative manner from available data in other studies. All values are based on murine experiments, but can easily be adjusted to

represent the bone fracture healing process in humans (Gibon et al., 2017; Marsell and Einhorn, 2011; Pivonka and Dunstan,

2012). The baseline parameter values represent healthy mice having a moderate fracture, i.e., a broken bone with a gap size less

than 3 mm (Bailon-Plaza and Van DerMeulen, 2001; Isaksson, 2012). These baseline values also satisfy the stability conditions

to observe a successful bone healing.
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Table 4: Parameter values used in simulations.

Parameter Range Baseline Value Units Reference

kd [3, 48] 13 1/day Marée et al., 2005; Nagaraja et al., 2014

aed [4.71 × 10
6
, 5 × 10

6] 4.71 × 10
6

cells/mL Nagaraja et al., 2014; Newman et al., 1982

KlM [6 × 10
5
, 1 × 10

6] 1 × 10
6

cells/mL Newman et al., 1982; Van Furth et al., 1973

kM [5 × 10
4
, 7 × 10

5] 5 × 10
4

cells/ng/day Van Furth et al., 1973

dM [0.121, 0.2] 0.121 1/day Wang et al., 2012; Yu, 2014

km [1 × 10
3
, 3.4 × 10

4] 1 × 10
3

cells/ng/day Ullah et al., 2013

k0 [2 × 10
−8
, 8.5 × 10

−6] 8.5 × 10
−6

ng/cells/day Kojouharov et al., 2017; Nagaraja et al., 2014

kα [7 × 10
−7
, 8.3 × 10

−6] 8.3 × 10
−6

ng/cells/day Nagaraja et al., 2014; Wang et al., 2012

dα [12.79, 55] 12.79 1/day Nagaraja et al., 2014; Wang et al., 2012

apm [0.01, 3.162] 3.162 ng/mL Kojouharov et al., 2017; Lacey et al., 2009

amb [0.1, 10] 0.1 ng/mL Kojouharov et al., 2017; Lacey et al., 2009

apb [10, 50] 10 ng/mL Kojouharov et al., 2017; Lacey et al., 2009

apm1
[5, 13] 13 ng/mL Bastidas-Coral et al., 2016; Kojouharov et al., 2017

kpm [0.5, 1.01] 0.5 1/day Bailon-Plaza and Van Der Meulen, 2001; Isaksson et al., 2008

dm [0.3, 1] 1 1/day Bailon-Plaza and Van Der Meulen, 2001; Isaksson et al., 2008

kpb [0.2, 0.35] 0.2202 1/day Bailon-Plaza and Van Der Meulen, 2001; Isaksson et al., 2008

db [0.1, 0.15] 0.15 1/day Bailon-Plaza and Van Der Meulen, 2001; Isaksson et al., 2008

pcs [2 × 10
−7
, 3 × 10

−6] 5 × 10
−7

g/cells/day Bailon-Plaza and Van Der Meulen, 2001; Trejo et al., 2019b

qcd1 [2 × 10
−7
, 3 × 10

−6] 5 × 10
−7

mL/cells/day Bailon-Plaza and Van Der Meulen, 2001; Trejo et al., 2019b

qcd2 [2 × 10
−8
, 2 × 10

−6] 8 × 10
−8

mL/cells/day Bailon-Plaza and Van Der Meulen, 2001; Trejo et al., 2019b

pbs [2 × 10
−8
, 2 × 10

−7] 5 × 10
−8

g/cells/day Bailon-Plaza and Van Der Meulen, 2001; Trejo et al., 2019b

qbd [2 × 10
−8
, 2 × 10

−7] 5 × 10
−8

mL/cells/day Bailon-Plaza and Van Der Meulen, 2001; Trejo et al., 2019b

Klb [2.7 × 10
4
, 1 × 10

6] 1 × 10
6

cells/mL Bailon-Plaza and Van Der Meulen, 2001; Isaksson et al., 2008

Klm [1 × 10
5
, 1 × 10

6] 1 × 10
6

cells/mL Bailon-Plaza and Van Der Meulen, 2001; Tevlin et al., 2017
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Figure 4: Sensitivity analysis results for cartilage and bone densities using di�erent phagocytic rates,RD. The most in�uential

parameters to the variability in the cartilage outcome are pcs and qcd2 (top), while for the bone outcome is pbs (bottom).
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Figure 5: Tissues evolution in a small fracture under the e�ects of di�erent phagocytic rates, RD. The slower phagocytic rate
RD2 yields higher productionof both tissues rather than the faster phagocytic ratesRD1 andRD0, after 8 and 12days, respectively.

First, a set of numerical simulation results is presented to investigate the phagocytosis e�ects on the bone fracture healing

process. Next, numerical simulations are performed to analyze the e�ects of macrophages and TNF-α in�ux rates on the �-

brocartilage and the bone densities under both normal and pathological conditions. Another set of numerical simulations is

performed to study the in�uence of the MSCs migration rate on the tissues progression. All simulations are performed until

day 21, which is the elapsed time for the in�ammatory and repair phases of bone fracture healing process in mice (Einhorn and

Gerstenfeld, 2015; Trejo et al., 2019b). The simulations are obtained by using the adaptive Matlab
®
solver ode23tb, with

initial conditions equal to zero, except for the initial debris densities being set toD(0) = 5 × 10
7
.

6.1 Phagocytosis effects on the bone fracture healing process
During the in�ammatory phase, macrophage capacity to engulf necrotic cells and unwanted material contributes with the res-

olution of in�ammation (Baht et al., 2018; Elliott et al., 2017). However, the exact e�ects of phagocytosis on the entire bone

fracture healing process is not clearly understood (Elliott et al., 2017; Sinder et al., 2015). In this section, Model (1)–(7) is used

to investigate how the �brocartilage and woven bone densities evolve under the three di�erent phagocytic rates RD0, RD1, and

RD2. In the di�erent sets of numerical simulations, the initial debris densities are chosen to be below (D(0) = 5 × 10
5
), equal

to (D(0) = 4.71 × 10
6
), and above (D(0) = 5 × 10

8
) the half-saturation of debris, aed, which represent small, moderate, and

severe fractures, respectively (Trejo et al., 2019b).

Figure 5 shows the numerical evolution of the tissues’ production/degradation for the di�erent phagocytic rates within

a small fracture, D(0) = 5 × 10
5
. The evolution of the cartilage and bone behave very similarly over time when using the

model with phagocytic rates RD0 and RD1, while their densities are more than doubled after the �rst week and beyond, when

using the phagocytic rate RD2. By construction, the phagocytic rates satisfy RD2 < RD1 < RD0 as functions of debris for

all 0 < D(t) < D(0) < aed = 4.71 × 10
6
. Hence, we observe in Figure 5 that higher tissue productions result under a slower

phagocytic rate rather thanunder faster phagocytic rates,RD0 andRD1, after the secondweek andbeyond. This computationally

con�rms the observedpotential role of an early fracture hematomapresent at the repair site in enhancingboth tissue productions

(Kojouharov et al., 2017; Kolar et al., 2010).

Figure 6 shows the numerical evolution of the tissues’ production/degradation for the di�erent phagocytic rates within a

moderate fracture, i.e., D(0) = 4.71 × 10
6
. The evolution of each tissue exhibits similar qualitative behavior under the three

phagocytic rates. However, more cartilage synthesis is observed, after four days, withRD2 followed byRD1 and thenRD0, while

more bone synthesis is observed, after ten days, withRD1 followed byRD0 and thenRD2. This suggests that the phagocytic rate

RD1 is the most suitable when modeling the evolution of the two bone tissues for moderate fractures.

Figure 7 shows the numerical evolution of the tissues’ production/degradation for the di�erent phagocytic rates within a

severe fracture, D(0) = 5 × 10
8
. The two tissues densities evolve di�erently for RD0 compered with RD1 and RD2. For RD0

the cartilage slowly increases in the �rst few days, it achieves its maximum density around day ten, and then decreases over time;
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Figure 6: Tissues evolution in a moderate fracture under the e�ects of di�erent phagocytic rates,RD. More cartilage synthesis

is observed, after 4 days, with RD2 followed by RD1 and then RD0, while more bone synthesis is observed, after one week, with

RD1 followed byRD0 and thenRD2.
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Figure 7: Tissues evolution in a severe fracture under the e�ects of di�erent phagocytic rates, RD. The two tissues evolve

similarly under the in�uence of saturated phagocytic rates,RD1 andRD2, where the cartilage increases until it achievesmaximum

density but in the absence of a bone density. ForRD0 the cartilage slowly increases in the �rst few days, it achieves its maximum

density around day ten, and then decreases over time, while the bone tissue drastically increases after day six and beyond.
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Figure 8: Tissues evolution under the e�ects of di�erent macrophages migration rates, kM . Higher cartilage production is

observed with the higher macrophages migration rates, 5 × 10
4
and 7 × 10

5
, between day 5 and day 11, followed by a lower

cartilage production under the same migration rates. However, higher bone tissues are produced under faster macrophages

migration rates after day 8.

while the bone tissue drastically increases after day six andbeyond. For the phagocytic rates given byRD1 andRD2, the two tissues

evolve similarly, where the cartilages increase until they achieve their maximumdensities but in the absence of bone densities. By

construction, the phagocytic rateRD0 is bigger thanRD1 andRD2, in severe fractures during the early stages of the bone healing

process. Hence, Figure 7 suggests that, in severe fractures, enhancing the clearing of debris by phagocytes is a viable therapeutic

interventions to accelerate removal of cartilage and increase bone production.

6.2 Macrophages migration and inflammatory cytokine production effects on the bone
fracture healing process

Impairment of bone fracture healing are commonly observed in severe traumas, aging, and immune-compromised individuals,

where recruitment of in�ammatory cells and cytokine synthesis are locally disturbed at the fracture site (Loi et al., 2016;Mangum

et al., 2019; Recknagel et al., 2013). The TNF-α secretion by macrophages signi�cantly increases in older people (Gibon et al.,

2016; Loi et al., 2016), while themacrophages in�ux is reduced in severe fractures (Recknagel et al., 2013). Prolonged and higher

in�ammatory cells in�ux are observed during systemic and chronic in�ammation (Gibon et al., 2017; Marsell and Einhorn,

2011). Therefore, Model (1)–(7) is used to investigate the e�ects of di�erent rate values of macrophages migration and TNF-α
production, kM and kα, on the bone fracture healing process. The values of kM are set equal to 5 × 10

3
, 5 × 10

4
, and 7 × 10

5
,

while the values of kα are set equal to 8.3× 10
−7
, 8.3× 10

−6
, and 8.3× 10

−5
. All the following simulations are performed under

the phagocytic rateRD1, since it is one of the most widely used forms in the literature (Gesztelyi et al., 2012; Trejo et al., 2019b)

and, according to our previous numerical results, it is also one of the most suitable form to use in moderate fractures.

Figure 8 shows the numerical evolution of the tissues’ production/degradation under the e�ects of di�erent macrophages

migration rates, kM . The di�erent parameter values of kM lead to changes in the two tissue densities. When using the smallest

value of kM = 5× 10
3
, less bone formation is observed, while the cartilage density is the smallest between day 5 and day 11, then

it increases and achieves its maximum value at day 16, before being degraded. When using kM = 5 × 10
4
and kM = 7 × 10

5

both cartilage densities have similar behaviours until day 11, after which the cartilage is been degraded when using kM = 5× 10
4

while the cartilage density does not change when kM = 7 × 10
5
. In this simulation, the parameter kM = 7 × 10

5
was selected

such that the inequality kαkM > dαdM holds, which corresponds to the dashed curves in Figure 8 representing the evolution of

an unsuccessful healing with a chronic in�ammation, Theorem 4.

Figure 9 shows the numerical evolution of the tissues’ production/degradation under the e�ects of di�erent Tα secretion
rates, kα. The di�erent parameter values of kα lead to drastic changes in both tissue densities, after the �rst week and beyond.

For the cartilage, higher production of TNF-α results in greater synthesis of cartilage, while the opposite e�ect is observed with
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Figure 9: Tissues evolution under the e�ects of di�erent TNF-α secretion rates, kα. Higher production of TNF-α results in
greater synthesis of cartilage, after day 10, while an opposite e�ect is observed with the bone production.

the bone. In addition, cartilage degradation is not observed for the larger values of kα.

6.3 MSCs migration effects on the bone fracture healing process
In this section, Model (1)–(7) is used to study the impact of the MSCs migration rate, km, on the bone fracture healing process
by observing the cartilage and bone evolution.

Figure 10 shows the numerical evolution of the tissues’ production/degradation under the e�ects of di�erent MSCs migra-

tion rates, km. As seen in the �gure, di�erent parameter values of km lead to drastic changes in the cartilage densities within the

�rst two weeks, while there are no signi�cant di�erences in the bone densities over time. The cartilage synthesis increases as the

MSCsmigration rate increases, suggesting that an early cartilage production can be accelerated by enhancingMSCs recruitment.

7 Discussion and Conclusions
A novel mathematical model was introduced to study the fundamental functions of phagocytes and in�ammatory cytokines

during the bone fracture healing process. Themajor contribution of ourmodel is the formation of a theoretical framework that

expands previous mathematical models (Bailon-Plaza and VanDerMeulen, 2001; Kojouharov et al., 2017; Trejo et al., 2019a,b)

by considering a general phagocytic rate function of debris removal by macrophages, and by explicitly incorporating the role of

the pro-in�ammatory cytokines in the process of cellular migration during bone fracture healing. The model analysis revealed

that excessive accumulation of phagocytes and in�ammatory cytokines at the injury site can lead to unsuccessful fracture healing,

while the numerical simulations showed that optimal healing outcomes depend on the abilities of the phagocytes to e�ciently

engulf debris.

The stability analysis of the model showed the full range of possible di�erent healing outcomes, including successful heal-

ing, and delayed and nonunion healing with or without resolved in�ammation (Theorems 1–4). In addition, a series of rate

inequalities were derived from the stability analysis (Table 3). These inequalities indicate which one of all possible states will

occur in the long-term healing process, and therefore, can be useful in clinical evaluations for classi�cation and prediction of the

di�erent bone fracture healing outcomes. Accordingly, successful healing, E1, is achievedwhenmacrophages andTNF-α do not
accumulate at the injury site, kαkM > dαdM , mesenchymal stem cells di�erentiate faster than they proliferate, dm > kpm, while
osteoblasts have an opposite mechanistic di�erentiation-proliferation, kpb > db.

The bifurcation analysis provided further insight into how the equilibria of the system, their number andproperties, depend

on the model parameters. By perturbing the values of the parameters representing the proliferation rate of MSCs, kpm, and the
migration rate ofmacrophages, kM , the bifurcation plots showed that the successful healing stateE1 changes its stability proper-
ties at two di�erent bifurcation points, Figures 2 and 3. This implied that the bone fracture healing process will result either in

a delayed or nonunion healing with and without chronic in�ammation responses, respectively. In addition, the perturbation of
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Figure 10: Tissues evolution under the e�ects of di�erent MSCs migration rates, km. Faster MSCs migration leads earlier

cartilage production, while there are no signi�cant di�erences in the bone densities over time.

these two parameter values showed the di�erent scenarios on equilibria sets that System (1)–(7) has, con�rming the theoretical

results from the stability analysis.

The sensitivity analysis revealed that the most in�uential parameters on the variability of the model outputs are the produc-

tion and degradation rates of the two tissues, with the cartilage production and degradation rates accounting formore than 20%

of the total cartilage variance per each parameter, while the bone tissue production rate accounting for more than 60% of the

total bone variance density.

The numerical simulations showed that di�erent types of phagocytic rates can lead to a very di�erent short-term tissues

evolution. It was observed that, in severe fractures, when phagocytosis is modeled by a saturation-rate function it results in a

delay in both cartilage degradation and bone synthesis, while normal healing progression is observed when using a linear rate

function to represent phagocytosis. These results suggest that optimal healingoutcomesmaydependon the ability of phagocytes

to successfully remove debris. The numerical simulations also con�rmed that the early fracture hematoma formation, present

at the repair site, enhances both tissues productions in small fractures (Kolar et al., 2010). Additionally, it was observed that,

after the �rst week of the healing process, low macrophages migration rates and high pro-in�ammatory cytokines production

by macrophages lead to an increase in cartilage synthesis while restricting the bone formation. Also, the numerical simulations

showed that higher MSCs migration rates can lead to higher cartilage production. Those �ndings suggest that an increase of

MSCs recruitment can be a viable therapeutic intervention that results in an accelerated cartilage formation during the early

stages of the bone fracture healing process.

The presented mathematical model can be easily adapted and used to investigate the impact of a variety of di�erent events

that occur during bone fracture healing, which can in turn guide future laboratory experiments and help to explore possible

therapeutic procedures that prevent and accelerate the healing process. Future research directions include modi�cations of the

model by incorporating spatial e�ects to account for cellular migration by chemotaxis and the integration of chondrocytes, os-

teoclasts, and othermolecular factors such as anti-in�ammatory cytokines, which also regulate the bone fracture healing process.
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