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ABSTRACT
Many rodent-borne hantaviruses are zoonotic pathogens that can cause disease in
humans through inhalation of aerosolized rodent excreta. To evaluate the prevalence
of Jaborá virus (JABV) over time within its rodent reservoir, Akodon montensis,
we formulated a mathematical model with multiple rodent age classes and unique
infection class progression features. We then parameterized the model with data
collected from a survey of JABV harbored by Akodon montensis in the Mbaracayú
Reserve in Paraguay. Our model incorporates three types of infection over the
lifetime of the rodent as well as a recovered class. A new feature of the model
allows transition from the latent to the persistently-infected class. With a more
complete age and infection structure, we are better able to identify the driving
forces of epidemiology of hantaviruses in rodent populations.
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1 Introduction
Hantaviruses are endemic in most parts of the world, being harbored by rodents, bats, moles or shrews. Each mammalian
reservoir carries a unique viral strain. Intraspecies transmission occurs through the inhalation of aerosolized virus excreted in
urine or feces (Padula et al., 2004), or through an exchange of blood and saliva during aggressive encounters among conspecic
individuals (Glass et al., 1988). We note that hantavirus is not lethal in rodents and does not usually cause health issues. While
not widely studied for most hantaviral reservoirs, viral infection of some rodent reservoirs may show lower survival rates, lower
body mass, slower weight gains, and higher testosterone (for example, see Luis et al. (2010, 2012)). However, no pathology has
been observed in bank voles infected with Puumala virus (Yanagihara et al., 1985), in deer mice experimentally infected with Sin
Nombre virus (Botten and Fix, 2000), or in cotton rats infected with Black Creek Canal virus (Hutchinson et al., 2000). But
higher doses of Black Creek Canal virus in the cotton rat can cause pneumonitis (Hutchinson and Fix, 1998). Researchers have
reported that Sin Nombre virus (SNV) seroprevalence may vary from very low (<1%) to levels greater than 25% in long-term
sampling in the western United States (Calisher et al., 2007). Field studies in Chile by Padula et al. (2004) suggested that a
latency period may be responsible for the low prevalence.

Rodent reservoirs of Jaborá hantavirus in Akodon montensis have been studied in the Interior Atlantic Forest of Paraguay,
and these populations exhibited low prevalence levels (Eastwood et al., 2018; Owen et al., 2010). To mechanically explain the
low prevalence of JABV over time within its rodent reservoir, A. montensis, we propose a mathematical model with rodent age
classes and a unique ‘latency’ class (having the virus but without the ability to transmit it). While the model used in this paper
is based on data from JABV found in a South American rodent reservoir,A.montensis in Paraguay, the model is generalizable to
other rodent reservoirs of hantaviruses due to its structure with age and infection classes (Jonsson et al., 2010; Yates et al., 2002).

Upon infection, the rodent reservoir can be characterized as having an acute infection as demonstrated by virus being shed
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in urine and feces. At some point, the rodent transitions to a persistent infection which is characterized by low or undetectable
levels of virus being shed in urine or feces. However the rodent remains infected in many tissues such as the lung and heart
(for example, see Botten and Fix (2000); Green and Fix (1998)). Such persistently infected rodents do not clear the virus, as
documented inMcAllister and Jonsson (2014), and this feature will be represented in our model. It is through these cycles that
rodent-borne hantaviruses are maintained in rodent communities in nature.

Infection of humans by exposure to rodent-borne viruses is considered to be a dead end, since humans cannot transmit the
virus to one another (LeDuc et al., 2002). In the New World, some hantavirus species transmitted from rodents to humans
cause hantavirus pulmonary syndrome, a serious condition with basic life support as the only medical treatment and mortality
rates of 36% in the United States (CDC, 2016). To better understand the drivers behind hantavirus spread, both intraspecies
and interspecies transmissionmust be considered. Prevalence levels for hantavirus infectionwithin rodent host populations vary
seasonally and geographically, ranging from roughly 1 to 6% in the montane grass mouse, A. montensis, in Brazil and Paraguay,
to 1 to 30% documented in the deer mouse, Peromyscus maniculatus, in the United States (Teixeira et al., 2014; Childs et al.,
1994). A suite of factors drives viral prevalence in rodent populations including host genetics, mating behaviors and environ-
mental factors (Luis et al., 2010; Eastwood et al., 2018). For example, the species A. montensis does not enter torpor (a short
period of reduced body temperature andmetabolic activity), and can have up to three reproductive cycles each year, potentially
leading to higher population density and/or higher dispersal rates (Jordão et al., 2010; Owen et al., 2010). Both factors would
likely increase contact and agonistic encounters with both conspecics and other species. This contrasts with North American
rodent species such as P. maniculatuswhich undergo torpor and have only a single reproductive cycle each year. Together these
and other abiotic and biotic factors modulate viral prevalence observed in males and females. Environmental characteristics,
such as seasonality and landscape structure, have also been linked to increased prevalence, as have anthropogenic factors such as
ecological disturbance and its corresponding impact on biodiversity (Luis et al., 2010; Langlois et al., 2001; Lehmer et al., 2008).

Previous theoretical work in this system has incorporated dierences in transmission and environmental factors to under-
stand changes in overall virus prevalence. Allen and collaborators have published several papers on epidemiological models of
hantavirus in A. montensis in Paraguay (Allen, McCormack, and Jonsson, 2006; Allen et al., 2009; Wesley et al., 2009). These
models include

• a 2006 dierential equations model followed by a stochastic model with SEIR compartments (susceptible, exposed, in-
fected, recovered) to include random seasonal and environmental variations (both in Allen, Allen, and Jonsson (2006));

• a 2006 dierential equations model featuring separate sex classes, followed by a stochastic dierential equations model of
similar structure (both in Allen, McCormack, and Jonsson (2006));

• a 2009 model by Allen et al. (2009) which used a habitat-based model for the spread of hantavirus between a reservoir
and spillover species; and

• a 2010 model by Wesley et al. (2010) that used an SI model which includes two infected classes and examines the role of
viral-contaminated soil.

Despite the extensive modeling work previously completed in this system, there has only been one discrete model developed to
investigate the outbreak structure for viral transmission of hantavirus (Wesley et al., 2009). This model consists of a discrete-
time rodent-hantavirus model structured by two infected classes (one for males and one for females) and three age classes. It
includes juveniles, subadults, and adults, split into female and male groups, and susceptible and infected classes of adults. It
further assumes that the juveniles and subadults could not become infected, and focuses on dierences in contact rates based on
the sex of themice. Due to age structure in our data set, we chose to formulate amodel discrete in timewith three age classes and
to use three types of infected classes to investigate persistent low levels of prevalence. We include a ‘latent’ class, which cannot
transmit the virus but carries it, which was suggested by the work of Padula et al. (2004). Our model also diers from other
hantavirus models due to its strong connection to data from Paraguay (Eastwood et al., 2018).

Motivated by the extensive prevalence data for hantaviruses in rodents collected inAugust 2014 in theMbaracayúReserve in
Paraguay (Eastwood et al., 2018), and by the uctuations in prevalence but persistence of the virus at a low level in data collected
from the region in 2005–2006 (Owen et al., 2010), we investigated possible mechanisms for the observed occurrences of the
virus through modeling. Our model is an age structured, discrete model which incorporates latent and recovered classes, and
our transition rates and prevalence levels are directly connected to this data (Eastwood et al., 2018) in Paraguay. In addition to
the classical stages of infection, acute and persistent, we add a latent class to better examine the dynamics of the virus. In this
model, rodents in the latent class do not shed virus, so they are not transmitting the virus, but are able to transition back into
the persistently infected class. The latent class is a novel addition to our model (compared to previous models), which oers a
possible explanation for the maintenance of the virus during normal periods and periods when outbreaks of virus are driven by
biotic or abiotic factors. The age structure includes diering transmission coecients between juvenile and adult populations.
By incorporating the new latent class and an expanded age class structure into ourmodel, we address the dynamics of hantavirus
within rodent populations.
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In the next section, we describe our data and our model. Then we followwith results and discussion, and in the last section,
conclusions are given.

2 Methods

2.1 Our Data

Ourmodel is based on data collected in August 2014 in the Reserva Natural de BosqueMbaracayú (RNBM) in Paraguay (East-
wood et al., 2018). The data collected at 22 sites from 2–11 nights of trapping include 417 rodents. Recorded features included
species, weight, total length, sex, reproductive status and categorical age. For all species, a combination of pelage (fur), size,
behavior and gestalt was used to designate age class. The presence of rodent-borne hantavirus antibodies and/or RNA and char-
acteristic tail lesions (potentially due to Leishmania) were also collected. Because we were interested in rodents which serve as
themain vector for hantavirus, we extracted species data for themost prevalent hantaviral reservoir species,A.montensis (sample
size=274), which comprised about 70% of the collected rodents. Three of the 274 A. montensis were newborns so sex on these
animals could not be determined and were therefore excluded from further analysis. Overall, we had 271 rodents in our dataset.

The demographic makeup of our data set (Eastwood et al., 2018) was 52% male, 48% female, 83% adults, and 17% juvenile.
The overall hantavirus prevalence was 6%, which is close to that in other studies (Eastwood et al., 2018; Owen et al., 2010;
Muylaert et al., 2019). Of the entire population, 7% of the males had hantavirus, and 3% of the females had hantavirus. Within
recorded hantavirus cases, 71% occurred in males, while 29% occurred in females. For the entire population, the prevalence
among juveniles was 6% and the prevalence among adults was 5%. Among seropositive individuals, juveniles compose 21%, and
adults compose 79%.

2.2 Our Model

In our model, the population is divided into three age classes (listed with lengths of time in each class): newborns B (23 days),
juveniles J (37 days), and subadults and adults A (305 days). There was not enough data to adequately separate subadults and
adults so they were combined into one class. These classes include males and females, homogeneously mixed. The susceptible
population S is broken into two compartments: susceptible juveniles SJ and susceptible adults SA. The literature suggests that
newbornsmay be unable to become infected ormay be delayed in their rate of infection due tomaternal antibodies (Voutilainen
et al., 2016; Kallio et al., 2013, 2010;Dearing et al., 2009;Georges et al., 2008; Kallio et al., 2006; Borucki et al., 2000; Bernshtein
et al., 1999; Dohmae and Nishimune, 1998) and/or their decreased contact with infected individuals due to their limited move-
ment from the den andmother, but the study byHutchinson et al. (2000) did not observe the inuence of maternal antibodies
on infection in Black Creek Canal virus. In our model, the newborns B are not susceptible and cannot be infected until they
become juveniles. The acutely infected population is broken into two compartments: infected juveniles IJ and infected adults
IA which have been reported to have the highest probability of shedding virus in saliva and excreta. As with the majority of viral
infections, rodents within this class will not produce antibodies early during the course of infection, and begin in some reservoirs
approximately ten days post-infection (Schountz et al., 2012, 2014). Once antibodies are produced in response to the infection,
fewer free virions will be available to infect other rodents.

The persistently-infected population is broken into two compartments: persistently-infected juveniles PJ and persistently
infected adultsPA. Persistently-infected rodents shed fewer virions and are signicantly less infectious than IA and IJ populations
and therefore have a lower transmission rate, and note that only the IA class can move to recovered R. The latent class L and
recovered class R consist only of adults. Rodents in the latent class L do not shed virus but are able to regress back into the
persistently infected stage PA. The recovered class R is not able to transmit the pathogen and is unable to regress back into an
infected class. Figure 1 illustrates the possible infection status and age transitions of the model shown in equations (1)–(9). The
periods of time in each infected class and age class are shown in Table 1 and Figure 2.

The model is stated in equations (1)–(9), where the adult population is A(t) = SA (t) + IA (t) + PA (t) + L(t) + R(t). The
model is discrete in time, using time-steps of days. The order of events in this model is: survival, age transition out of class, age
transition into class, new infection, progression of infection out of class, and progression of infection into class. Transition from
P to LA happens last. The parameters of the model are dened in Table 2. All age transition rates are denoted by µB, µJ , and µA
for the three classes (newborns, juveniles and adults).

We discuss each equation in the model in detail. Given a death rate, like dB, then the corresponding survival rate is (1− dB),
and given a transition rate out of a compartment, like µB, the corresponding rate for remaining in that compartment is (1− µB).
Starting with the newborn class B(t), the survival and the remaining in class have coecients (1−dB) and (1− µB). Then lastly,
the new births are added in with density dependence on the size of the adult population A(t), which is shown with a baseline
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Figure 1: A owchart of the model shown in equations (1)–(9). Vertical arrows denote age transitions and horizontal arrows
denote infection transitions. Births from the adults, SA + IA +PA +L+R, come into the newborn class B. Natural deaths occur
from each compartment, but note that there are no pathogen induced deaths.

Figure 2: Timeline progression from newborn to adult. Time is measured in days post birth.

Table 1: Table of infection classes, transmission levels, and infection class length in days.

Class Level of Infectiousness Length (days)
Acutely Infected (I) Shedding most virus 23

Persistently Infected (P) Shedding little virus 37
Latent (L) No Shedding 60
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rate bA and modied by
K

K + A(t) .

Note the birth rate bA will be one half of the birth rate for females in our population, assuming that there are equal numbers
approximately of males and females. The order of events in the SJ equation begins with the individuals of SJ (t) surviving with
rate (1 − dJ ) and remaining after age transition with rate (1 − µJ ). This is followed by adding individuals due to age transition
from newborn to juvenile, represented by (1−dB)µBB(t). These actions in the SJ equation are followed by transmission, which
moves a proportion of individuals from SJ to IJ , with corresponding β and ε terms in the exponential term, due to transmission
from IJ , IA,PJ , and PA classes. The proportion of the SJ class remaining is

exp
(
−
(
βJJ IJ (t) + βAJ IA (t) + εJJPJ (t) + εAJPA (t)

) )
after the following proportion moves to IJ due to transmission

1 − exp
(
−
(
βJJ IJ (t) + βAJ IA (t) + εJJPJ (t) + εAJPA (t)

) )
.

Then looking to the IJ class, we see the three factors (1− dJ ) (1− µJ ) (1− α) representing the proportion of IJ (t) surviving with
(1 − dJ ), remaining after age transition with (1 − µJ ) and remaining after transition to P with (1 − α). Then, infecteds from
SJ move into this class with the (1 − exp(. . .)) term. The last juvenile class PJ has the rates of surviving and remaining after age
transition as (1 − dJ ) (1 − µJ ). A proportion of the IJ individuals, who have survived and remain juvenile, make their transition
into PJ with rate α, given by IJ (t) (1 − dJ ) (1 − µJ )α.

Similarly for the adult classes, we have SA individuals surviving with rate (1−dA) and then individuals of the SJ class moving
in due to age transition as (1 − dJ )µJSJ . The proportion remaining after transmission is represented by the exp(− . . .) with
corresponding coecients βJA, βAA, εJA, and εAA. The IA equation is similar to the IJ equation, except for transition in from the
IJ compartment and followed by transition γ out to theR class.

The PJ equation has survival (1 − dJ ) and the proportion (1 − µJ ) remaining after the transition to PA, followed by the
transition from IJ with the term

IJ (t) (1 − dJ ) (1 − µJ )α.
The PA equation has survival and the addition of the transitioning PJ individuals, followed by the transition to the L class, and
then the transition from IA (with rate α) and from L (with rate δ).

The L class has survival, transition in from PA (with rate η) and then the remaining proportion (1 − δ) after a proportion δ
moves to PA. Lastly the recovered classR survives, and then there is movement in from IA with terms

γ(1 − α)
(
IA (t) (1 − dA) + IJ (t) (1 − dJ )µJ

)
,

as can be seen in the last term in the following system of equations:

B(t + 1) = B(t) (1 − dB) (1 − µB) +
bAK

K + A(t)A(t) (1)

SJ (t + 1) =
(
SJ (t) (1 − dJ ) (1 − µJ ) + B(t) (1 − dB)µB

)
exp

(
−
(
βJJ IJ (t) + βAJ IA (t) + εJJPJ (t) + εAJPA (t)

) )
(2)

SA (t + 1) =
(
SA (t) (1 − dA) + (1 − dJ )µJSJ (t)

)
exp

(
−
(
βJAIJ (t) + βAAIA (t) + εJAPJ (t) + εAAPA (t)

) )
(3)

IJ (t + 1) = IJ (t) (1 − dJ ) (1 − µJ ) (1 − α)

+
(
SJ (t) (1 − dJ ) (1 − µJ ) + B(t) (1 − dB)µB

) (
1 − exp

(
−
(
βJJ IJ (t) + βAJ IA (t) + εJJPJ (t) + εAJPA (t)

) ))
(4)

IA (t + 1) =
(
IA (t) (1 − dA) + IJ (t) (1 − dJ )µJ

)
(1 − α) (1 − γ)

+
(
SA (t) (1 − dA) + SJ (t) (1 − dJ )µJ

) (
1 − exp

(
−
(
βJAIJ (t) + βAAIA (t) + εJAPJ (t) + εAAPA (t)

) ))
(5)

PJ (t + 1) = PJ (t) (1 − dJ ) (1 − µJ ) + IJ (t) (1 − dJ ) (1 − µJ )α (6)

PA (t + 1) =
(
PA (t) (1 − dA) + (1 − dJ )µJPJ (t)

)
(1 − η)

+
(
IA (t) (1 − dA) + IJ (t) (1 − dJ )µJ

)
α + δ

(
L(t) (1 − dA) + η

(
PA (t) (1 − dA) + PJ (t) (1 − dJ )µJ

))
(7)
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L(t + 1) =
(
L(t) (1 − dA) + η

(
PA (t) (1 − dA) + PJ (t) (1 − dJ )µJ

))
(1 − δ) (8)

R(t + 1) = R(t) (1 − dA) + γ(1 − α)
(
IA (t) (1 − dA) + IJ (t) (1 − dJ )µJ

)
(9)

3 Results and Discussion
The parameters of the model are dened in Table 2.

All age transition and infected class progression rates are in terms of days and are the reciprocal of the length of time an
individual spends in each age or infected class (Figure 2, Table 1). Mortality rates were estimated using those rates for a single
season in Galiano et al. (2011); Gentile et al. (2000). Mortality rates were then derived using the length of time of each age
class and overall mortality rate for a season, with mortality in the newborn phase being low, juvenile high, and adult moderate
(Gentile et al., 2000). Assuming half the adults are female, the baseline birth rate bA would be one half of the birth rate from
females. Note that bA = 1

70 = 0.0143 births per day would result in about 10.5 newborns in year, usually coming from 2 or
3 litters per female per year (Eastwood et al., 2018; Owen et al., 2010).

The parameters for the infected classes were derived from seroprevalence data showing days past infection (Lee et al., 1982).
The rates are the reciprocals of these infectious periods. Age class progression rates were derived from (Gentile et al., 2000) by
taking the reciprocal of the timewithin an age class. The parameter βAAwasmanipulated to achieve an equilibriumprevalence of
6% tomatch our data set andwhatwas observed in otherA.montensis populations (Teixeira et al., 2014). The other transmission
rates are expressed as fractions of the baseline transmission rate βAA.

To determine the baseline population from which simulations for the model were run, we rst calculated the disease free
equilibrium (DFE) (from equations (10)–(12)) by assuming that IJ = IA = PJ = PA = L = R = 0, and deriving expressions
for the non-infected classes (B, SJ , and SA) shown in equations (10)–(12). We then expressed the initial conditions for the in-
fected classes as a proportion of the total population at the disease free equilibrium. The multipliers were chosen to achieve
approximately a 6% overall prevalence in the initial population, as was observed in the data collected in theMbaracayú Reserve.
For example, we calculated from the data that approximately 60% of individuals in the infected classes belonged to the infected
class I , while approximately 30% of the individuals were in the persistently infected class P. Additionally, we estimated that
approximately 21% of the individuals in the infected classes were juveniles, while about 79% were adults. Lastly, we estimated
that 10% of the infected population belonged to the latent class L based on the data set (Eastwood et al., 2018) and a prior study
(Owen et al., 2010). These approximations were used to create the initial conditions for the infected classes shown in equations
(16)–(21). Any alterations to the model parameters in a simulation were recorded and the initial conditions were recalculated
under these new conditions. This was done in order to standardize initial conditions for the parameter changes.

B∗ =
K [bA (1 − dJ )µJ (1 − dB)µB − dA (1 − (1 − dB) (1 − µB)) (1 − (1 − dJ ) (1 − µJ ))]

(1 − (1 − dB) (1 − µB)) (1 − dJ )µJ (1 − dB)µB
(10)

S∗J =
B∗ (1 − dB)µB

(1 − (1 − dJ ) (1 − µJ ))
(11)

S∗A =
(1 − dJ )µJS∗J

dA
(12)

B(0) = B∗ (13)
SJ (0) = S∗J (14)

SA (0) = S∗A (15)

IJ (0) = (0.06 ∗ 0.6 ∗ 0.21) (B∗ + S∗J + S∗A) (16)

IA (0) = (0.06 ∗ 0.6 ∗ 0.79) (B∗ + S∗J + S∗A) (17)

PJ (0) = (0.06 ∗ 0.3 ∗ 0.21) (B∗ + S∗J + S∗A) (18)

PA (0) = (0.06 ∗ 0.3 ∗ 0.79) (B∗ + S∗J + S∗A) (19)

L(0) = (0.06 ∗ 0.1) (B∗ + S∗J + S∗A) (20)

R(0) = 0 (21)
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TheNext GenerationMatrixMethod for calculating the basic reproduction numberR0 for discrete-time models described
by Allen and van den Driessche (2008) was used to calculate R0 for the model; we checked the needed assumptions to use
this method on our model (meaning, the spectral radius of the Jacobian of the transitions between infected classes and of the
Jacobian for the model without infection are both below 1.) Using this method, we take the infected classes to IJ , IA, PJ , PA, L
and thenR0 takes the formR0 = ρ(F (I − T )−1), where F is the Jacobian matrix that results from dierentiating the terms that
describe new infections in the infected classes, T is the Jacobianmatrix that results fromdierentiating all other transitions in the
infected classes, and ρ is the spectral radius. Thismethod allowed for the simplication of the system to ve equations by limiting
calculations to only equations (4)–(8); those pertaining to infected individuals. We used the block structure, determinants,
traces, and sum of minors, but we were not able to nd a reasonable algebraic expression for R0. Thus R0 was only calculated
for our particular parameter values, shown in Table 2, yielding R0 = 1.06. This indicates that the DFE is unstable and the
infection persists in our model.

We ran model simulations with the baseline parameters, which gave the initial conditions stated in equations (22)–(30).
The total initial population is 652, of which 37 are infected and 616 non-infected. Figure 3 shows all the noninfecteds in the
population. The susceptible adult SA compartment decreases from 479 to 418, while the newborn B compartment increases.
The susceptible juvenile SJ and recovered R compartments appear to be leveling o. In Figure 4, we see the ve infected com-
partments with Pj , PA, and L increasing at rst and with IJ and IA both decreasing. The prevalence starts at about 5.6% and
drops only slightly over time to 4.9% over a year.

B(0) = 64.3684 (22)
SJ (0) = 71.8341 (23)
SA (0) = 479.4815 (24)

IJ (0) = 4.6546 (25)
IA (0) = 17.5101 (26)
PJ (0) = 2.2165 (27)
PA (0) = 8.7550 (28)

L(0) = 3.6941 (29)
R(0) = 0 (30)

In order to assess the relationship between prevalence and themodel parameters, we performed a LatinHypercube Sensitiv-
ity Analysis (Marino et al., 2009). This analysis randomly generates a matrix of 10,000 vectors of the model parameters within
given bounds, whichwere chosen as 25% above and below the baseline parameters. Using parameters βAA, bA, dB, dJ , dA, uJ , α, γ,
η, and δ, we veried that the monotonicity of the output measure of prevalence with respect to each parameter, which is needed
to use the Partial Rank Correlation Coecients (PRCC). Simulations were then run using each vector of the parameters, with
the outputmeasure of prevalence after 300 time-steps. APRCCand a p-value are then produced for eachmodel parameter. The
sign andmagnitude of the correlation coecient, as well as the p-value, were used to assess the impact and statistical signicance
of each parameter on the prevalence of the virus within the population. Using this analysis, we found that all parameters were
statistically signicant, having p-values below 0.05 (Figure 5). Note that the baseline birth and death rates, bA and dA, are known
from this data and we do not need to further investigate its eect. If the rodents recover, then they do not get into the loop for
PA and L, and thus we will choose to vary the recovery rate γ to document its eect on prevalence. We will vary the transition
rates, δ and η, between classes L and PA.

To test howprevalence is aected by changes in the initial rodent population, themodel was simulated at the baseline values.
Themodel was simulated four times, each time varying the initial condition of one of the compartmentsB,L, IA, Sj , at ten times
its baseline initial condition valuewhile keeping all other initial values at the baseline (Figure 6). For example, if the baseline value
for infected adults was 1, a simulation would be run in which the initial number of infected adults was 10 and all other initial
values were maintained at the baseline. This gives a comparison of how dierences in the initial population of a particular
class aect the prevalence of the virus. When varying the age structure of the population in our model, prevalence was found
to be more sensitive to increases in the initial number of individuals in the younger age classes (Figure 6). When newborns
and susceptible juveniles are the age class with the largest initial population, the prevalence of hantavirus spikes and eventually
returns to the baseline. When the dominant initial age class is comprised of adults, the spike in prevalence is much lower and the
prevalence returns to the baseline in a shorter amount of time than when the younger age classes are initially dominant. This is
of particular importance during conditions that are conducive to newborn and juvenile success such as high resource availability
or lack of predators.
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Table 2: Table of parameter denitions and values. All the rates have units of per day, the time-step. The parameterK has units
of number of rodents.

Parameter Denition Value

µi Transition rate from age class i µB = 1/23
µJ = 1/37

di Death rate for age class i
dB = 0.003521
dJ = 0.012123
dA = 0.004

α Rate of transition from I to P class 1/23
γ Rate of recovery 1/10
η Rate of transition from P to L class 1/37
δ Rate of transition from L to P class 1/60

βij Transmission rate for I class βAA = βJJ = 0.00012
βAJ = βJA = 0.75 ∗ βAA

εij Transmission rate for P class εAA = εJJ = 0.25 ∗ βAA
εAJ = εJA = 0.1875 ∗ βAA

K Density dependent eect on births 375
bA Birth rate 0.0143

Figure 3: Plots showing the non-infected compartments with SA on left and B, SJ , andR on right over a 365 day period.
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Figure 4: Plots showing the overall population in each infected compartment over a 365 day period.

Figure 5: Chart showing the PRCC coecients for model parameters determined using Latin Hypercube Sampling. All
parameters had p-values less than 0.05 and were considered statistically signicant.
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Figure 6: Graph showing the eect of dierent initial age structures on prevalence. The dominant initial class was the class
that was set at 10 times its baseline value initially.

In order to compare the eect of the infected (I) and latent (L) classes on prevalence, the model was run at the disease free
equilibrium to get a baseline for comparison. Then, one trial was run with the addition of 50 individuals in the I class and then
with the addition of 50 individuals in the L class. Increases in the number of individuals in the latent class increased prevalence
over the course of a year more than the acutely infected classes (Figure 7). This indicates that the latent class may be partially
responsible for observed spikes in the number of infected individuals that have been observed in populations over time.

Next, we focus on transition rates in and out of our latent class. To study the eect of the transition rate δ from the latent
class back to persistently infected class, simulations were run at dierent values of δ (Figure 8). Increases in δ caused signicant
increases in prevalence, as higher δ value results in a prevalence that is much higher than that corresponding to the baseline value
δ = 1

60 . This class has not been highly studied, however, our results demonstrate that it can have a large impact on the overall
prevalence of hantavirus, which suggests it should be considered in future hantavirus models.

One can see the eect of the transition rate η from persistently infected class to the latent class in the results of simulations
shown in Figure 9. As the rate η increases from η = 1

56 to 1
19 , the prevalence doubles due to more individuals being able to

transmit the virus.
In order to compare the eect of the recovered class, the recovery rate γ was altered 50% above and below the baseline con-

ditions (Figure 10). The recovered class appears to have a large impact on the overall prevalence. When γ, the recovery rate, was
varied by 50% above and below the baseline γ = 1/10while keeping all other parameters constant, the overall prevalence ranged
from 2% to 13%. When the rate of recovery was lowered to 1/15, the prevalence in the population was maintained at over twice
the baseline value γ = 1/10. When it was increased to 1/5, the disease was eliminated from the population.

To understand the potential importance of the L latent compartment in this model, we ran a simulation without that class
and compared the resulting prevalences. In Figure 11, the prevalence resulting from removing the L compartment is much
higher than the prevalence found in our empirical data. Thus the L compartment may represent a reasonable mechanism in
these dynamics.

4 Conclusions and Future Work
To understand the persistence of hantavirus in A. montensis, the rodent reservoir population represented by our data, we in-
cluded a new non-infectious carrier class, L, into our model and investigated its eect on prevalence. In our model, individuals
in this class (L) can transition back to the persistently infected, PA, and begin to transmit the virus again. When the latent class is
removed, the prevalence in themodel is much higher (Figure 11) than that of our baseline model and the data set. The impact of
the transition rates between latently infected and persistently infected adults is documented in Figures 8 and 9. Our simulation
results indicate that this class may provide a potential explanation for the low prevalence endemicity observed in A. montensis
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Figure 7: Graph comparing the eect of the latent and acutely infected classes on prevalence. These simulations were run at
the disease free equilibrium, once with the addition of 50 individuals in the L class and once with the addition in the I class.

Figure 8: Graph showing the eect of the rate of transition δ on prevalence
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Figure 9: Graph showing the eect of the rate of transition η on prevalence

Figure 10: Graph showing the eect of varying the recovery rate γ on prevalence.
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Figure 11: Graph comparing prevalence over a 365 day period for our model run at our baseline parameters 2 and with the
latent class removed.

populations in the Mybaracyú Reserve, and other locations throughout Paraguay and South America.
The addition of a carrier class can lead to dierent endemic equilibrium scenarios, depending upon the force of infection,

as seen in certain communicable diseases, such as HBV (Medley et al., 2001). When R0 is high, infections are skewed to a
younger age class, and in the opposing scenario with a lowerR0, infections are skewed to an older age class (Keeling andRohani,
2008). Provided an age structuredmodel, such as ours, and dierent initial conditions; a variety of endemic prevalence values are
possible given dierent initial conditions. Althoughwe only consider the parameters derived from our data set (and ourmodel’s
robustness to those parameters (Figures 5, 7, 8, 9, 10), the literature documents a large range of observed prevalence values
across various host species and environments (Childs et al., 1994; Teixeira et al., 2014). Motivated by low prevalence endemicity
and modulations in prevalence, we created a model that incorporates both age structured population and carriers, which as
previously noted, allows for endemicity with a wide array of parameter values. We also want to note that the transient dynamics
observedwhenage structure is skewed suggest that factors aecting the age class distributionona short-term timescale canheavily
inuence the prevalence. This result is very relevant to the observed endemicity at low percent prevalence (presumably when
there is an adult age skew), and it also may explain the prevalence’s correlation to seasonal, annual, or semi-annual outbreaks, as
temporal modulations aect the resources that facilitate high fecundity and survival of young A. montensis (Sánchez Martínez,
2017). With an age structure that allows for sporadic outbreaks and a carrier class that serves as a long term reservoir, we were
able to evaluate the prevalence of JABV over time within its rodent reservoir, A. montensis, and oer insight into various other
hantavirus systems.

Our work with discrete models, though primarily focused upon the epidemiological status of individuals as well as the age
structure of our sample population, could be built upon by other modeling techniques and additional heterogeneities. Envi-
ronmental characteristics such as seasonality and landscape structure have been linked to increased prevalence, as have anthro-
pogenic factors such as ecological disturbance and its corresponding impact on biodiversity (Langlois et al., 2001; Lehmer et al.,
2008; Luis et al., 2010; SánchezMartínez, 2017). Ourmodel, which does not consider temporal variation, suggests that seasonal
modulations are important for cyclical outbreaks (Figure 6), and it is well known that spatial arrangement of populations aects
the endemicity and equilibrium prevalence of diseased populations (Gurarie and Seto, 2008; Hess, 1996; Wang and Mulone,
2003). Therefore, future work that considers spatial and temporal heterogeneity will complement our research, as well as past
hantavirus modeling studies (Allen, McCormack, and Jonsson, 2006; Allen et al., 2009; Wesley et al., 2009, 2010). Additional
research that considers anthropogenic and climate change, as well as optimal control strategies to limit zoonotic transfer during
outbreaks will also contribute to the understanding and management of one of the deadliest viruses in the world.

5 Data Access
Note that no new data was used in this paper, and the data used here were from Eastwood et al. (2018).
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