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ABSTRACT
One of the ultimate goals in systems biology is to develop control strategies to
find efficient medical treatments. One step towards this goal is to develop methods
for changing the state of a cell into a desirable state. We propose an efficient
method that determines combinations of network perturbations to direct the system
towards a predefined state. The method requires a set of control actions such as
the silencing of a gene or the disruption of the interaction between two genes.
An optimal control policy defined as the best intervention at each state of the
system can be obtained using existing methods. However, these algorithms are
computationally prohibitive for models with tens of nodes. Our method generates
control actions that approximates the optimal control policy with high probability
with a computational efficiency that does not depend on the size of the state space.
Our C++ code is available at https://github.com/boaguilar/SDDScontrol.
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1 Introduction

Thanks to the recent explosion of available experimental data, generated by high throughput technologies, many mathematical
models has been proposed to describe the behavior of genes and their interaction within the cell (Kau�man et al., 2003; Huang
et al., 2009; Abou-Jaoudé et al., 2016). The interaction of genes and their products, which is commonly abstracted as Gene
Regulatory Networks (GRN), is fundamental to understand many important cellular processes. Thus, much of the modeling
e�orts in the past decades focused on �nding correct models to reproduce the experimental evidence that characterize GRN. In
the recent years, however, some algorithms for control of GRN has been proposed. These methods focus on �nding perturba-
tions to a GRN that induce the transition of a cell towards a new prede�ned cellular state. These algorithms promise to be the
building blocks of future methods aimed at design of optimal therapeutic treatments.

Models of GRN can be classi�ed according to how the time and the population of gene products are treated. There are
methods based on continuous gene populations and continuous time, based on ordinary di�erential equations (Alon, 2019;
Fall et al., 2010); discrete populations and continuous time, such as models based on the Gillespie formulation (Gillespie, 1977);
and discrete population and discrete time framework such as Boolean networks (BN) (Kau�man et al., 2003; Thomas and D’Ari,
1990; Shmulevich et al., 2002). The BN modeling framework and its extensions are of particular interest for the development of
control algorithms of GRN due to their discrete formulation, which allows for 1) a natural incorporation of control actions and
their e�ect on the model and 2) a suitable computational tractability for testing methods by exhaustive exploration, although
only for small systems. In this paper, GRN are modeled by stochastic discrete dynamical systems (SDDS) introduced in (Murru-
garra et al., 2012), which is an extension of the deterministic BN that allows the incorporation of stochasticity in the transitions
of the GRN model.

In the BN framework, every node of the GRN is assigned a binary value that represents the gene expression level, which
depends on the values of the other nodes. The state of the GRN is then represented by the set of values of all the nodes of the
BN. Importantly, special states of the system called attractors are hypothesized to correspond to functional cellular states, such as
senescence or apoptosis (Huang, 1999; Kau�man, 1969). Controlling a GRN involves the application of perturbations (control
actions) to the GRN to drive the cell towards a desired state. The control actions represent gene silencing (node deletion) and
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the disruption of protein-protein interactions (edge deletion). The methods to control GRN based on discrete models can be
divided into two categories. There are methods that aim to �nd a set of structural perturbations on the network that change
the dynamic behavior of the system in the long run (Zañudo and Albert, 2015; Murrugarra et al., 2016; Zañudo et al., 2017;
Sordo Vieira et al., 2019). The method proposed in this work belongs to a second category, which is composed of methods that
require a set of candidate actions as input (Youse� et al., 2012; Bertsekas, 2005; Chang et al., 2013; Sutton and Barto, 1998), and
aim to �nd the optimal sequence of combined actions that will drive the systems towards the desirable state.

The optimal control methods that are based on the theory of Markov decision processes (MDP) provide an action for each
state of the system that will eventually make the system transition into a desirable state. Most of these methods become com-
putationally unfeasible if the size of the Boolean network is large; they are currently applied to GRN of about tens of nodes.
Recently built networks, however, consist of about a hundred of nodes (Naseem et al., 2012; Raza et al., 2008; Saez-Rodriguez
et al., 2007; Singh et al., 2012; Kazemzadeh et al., 2012; Madrahimov et al., 2013; Saadatpour et al., 2011; Zhang et al., 2008;
Samaga et al., 2009; Helikar et al., 2008, 2013; Tomas and et. al., Tomas and et. al.). Thus, there is a need for more e�cient
methods to �nd optimal control sequences for large GRN. This paper introduces an algorithm to approximate the optimal
control strategy from a set of potential actions. Importantly, the complexity of the proposed algorithm does not depend on
the number of possible states of the system, and can be applied to large systems. We used approximation techniques from the
theory of Markov decision processes and reinforcement learning (Bertsekas, 2005; Sutton and Barto, 1998; Kearns et al., 2002;
Bertsekas, 2019) to generate approximate control interventions to drive the GRN away from undesirable states. The proposed
method was tested in three GRN of varying sizes and compared with exact solutions obtained by methods based on exact MDP
and value iteration (Abul et al., 2004; Datta et al., 2004; Pal et al., 2006; Youse� et al., 2012; Chen et al., 2012).

This paper is structured as follows. In the next section (Methods) we brie�y describe the class of Boolean networks and
the modeling framework under consideration. We then de�ne the control actions, formulate the optimal control problem, and
present the proposed approximation algorithm. In the Results and Applications section, we test the approximation method in
three biological systems of di�erent sizes. We discuss our results in the �nal section.

2 Methods
In this section we present the modeling framework to be used, a de�nition of the control actions, the optimal control algorithm,
and an approximation method for an e�cient computation of near-optimal policies.

2.1 Modeling Framework
Our methods for �nding control policies are applied to GRN modeled with stochastic discrete dynamical systems introduced in
(Murrugarra et al., 2012). This framework is an appropriate setup to model the e�ect of intrinsic noise on network dynamics.
A SDDS in the variables x1, . . . , xn, which in this paper represent genes, is de�ned as a collection of n triplets

F =
{
fk, p↑k , p

↓
k

}n
k=1

where for k = 1, . . . , n

• fk : {0, 1}n → {0, 1} is the update function of xk,

• p↑k ∈ [0, 1] is the activation propensity,

• p↓k ∈ [0, 1] is the degradation propensity.

The stochasticity originates from the propensity parameters p↑k and p↓k , which should be interpreted as follows: if there would
be an activation of xk at the next time step, i.e., xk (t) = 0, and fk (x1 (t), . . . , xn (t)) = 1, then xk (t + 1) = 1 with probability p↑k .
The degradation probability p↓k is de�ned similarly. Parameter estimation techniques for computing the propensity parameters
of SDDS have been developed in (Murrugarra et al., 2016).

The SDDS framework can be described as a �nite-state Markov chain by specifying its transition matrix as follows. Let
F =

{
fk, p↑k , p

↓
k

}n
k=1

be a SDDS and consider x ∈ {0, 1}n and z ∈ {1, 0}. For all k we de�ne the function θk,x (z) by

θFk,x (z) =


p↑kδ

fk
z + (1 − p↑k)δ

xk
z , if xk < fk (x),

p↓kδ
fk
z + (1 − p↓k)δ

xk
z , if xk > fk (x),

δxkz , if xk = fk (x),
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where δji is the Kronecker delta function. This operator de�nes the probability of xk to become z in the next time step. If the
possible future value of the k-th coordinate is larger (smaller, resp.) than the current value, then the activation (degradation)
propensity determines the probability that the k-th coordinate will increase (decrease) its current value. If the k-th coordinate
and its possible future value are the same, then the i-th coordinate of the system will maintain its current value with probability 1.
Notice that θFk,x (z) = 0 for all z ∉ {xk, fk (x)}.

The dynamics of F , from a Markov chain point of view, is de�ned by the transition probabilities between the states of the
system. For a Boolean SDDS with n genes there are 2n possible vector states. For x = (x1, . . . , xn) ∈ S and y = (y1, . . . , yn) ∈ S
the transition probability from x to y is:

Px,y =
n∏
k=1

θFk,x (yk). (1)

Algorithm 1 Sparse sampling algorithm

Require: A SDDS F =
{
fk, p↑k , p

↓
k

}n
k=1

, A, h, c, s, noise: g.
Ensure: Optimum action a∗ for state s.

1: a∗ = argmina∈A (RecursiveQ(s, h, SDDS, a))
2: return a∗
3: function RecursiveQ(s,h,SDDS,a)
4: if h = 0 then
5: return 0
6: Q = 0,C = 0
7: for i=1,. . . , c do
8: y =NextState(SDDS, s, a, g)
9: Q = Q + minu∈A{RecursiveQ(y, h − 1, SDDS, u)}

10: C = C + C (s, a, y)
11: return C

c +
γ
cQ

12: function NextState(SDDS,s,a,g)
13: if rand < g then
14: return random state from S.
15: else
16: return SDDS.nextstate(s, a)

2.2 Definition of Control Interventions: edge and node manipulations

Let F =
{
fk, p↑k , p

↓
k

}n
k=1

be an SDDS and W be wiring diagram associated to F . That is, W has n nodes, x1, . . . , xn, and there is
a directed edge from xi to xj if fj is a function that depends on xi . Notice that the presence of the interaction xi → xj implies
that fj depends on xi , say fj (xj1 , . . . , xjm ) with xi ∈ {xj1 , . . . , xjm }. Methods for identifying edge and node controls in BN has
been developed in (Murrugarra et al., 2016; Murrugarra and Dimitrova, 2015). For completeness, we reproduce the control
de�nitions below.

A SDDS with control is obtained by replacing the functions fj for Fj : {0, 1}n × U → {0, 1}, where U is a set that denotes
all possible control inputs.

De�nition 2.1 (Edge Control). Consider the edge xi → xj in the wiring diagramW. The function

Fj (x, ui,j) ≔ fj (x1, . . . , (ui,j + 1)xi , . . . , xn)

encodes the control of the edge xi → xj , since for each possible value of ui,j ∈ F2 we have the following control settings:

• If ui,j = 0, Fj (x, 0) = fj (x1, . . . , xi , . . . , xn). That is, the control is not active.

• If ui,j = 1, Fj (x, 1) = fj (x1, . . . , xi = 0, . . . , xn). In this case, the control is active, and the action represents the removal of the
edge xi → xj .

De�nition 2.2 (Node Control). Consider the node xj in the wiring diagramW. The function

Fj (x, uj) ≔ (uj + 1)fj (x) (2)
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encodes the control (knock-out) of the node xj , since for each possible value of uj ∈ F2 we have the following control settings:

• For uj = 0, Fj (x, 0) = fj (x). That is, the control is not active.

• For uj = 1, Fj (x, 1) = 0. This action represents the knock-out of the node xi .

The motivation for considering these intervention actions is the following: an edge deletion models the experimental in-
tervention that represses the interaction of two biomolecules of system (this can be achieved for instance by the use of drugs
that target that speci�c interaction, see Choi et al. (2012)); and a node deletion represents the complete silencing of a gene. For
simplicity, we have considered only gene silencing in Equation 2, but it is possible to consider a control that maintains high
expression of genes (the node is maintained in 1) as was done in (Murrugarra et al., 2016; Murrugarra and Dimitrova, 2015).

2.2.1 Control actions

The control methods in (Murrugarra and Dimitrova, 2015; Murrugarra et al., 2016) can identify a set E of control edges and
a set V of control nodes. We will consider a control action a as an array of binary elements of size |U | = |E | + |V |. The kth
element of a corresponds to an control node u−l if k < V and to a control edge ui,j if V ≤ k < |U |. Thus, a value of 1 in ak
represents that its corresponding control intervention (node or edge) is being applied. Thus, an action array a is a combination
of control edges and nodes that are being applied to the GRN simultaneously in a given time step. The set of all possible actions
A = {(0, . . . , 0), (0, . . . , 1), . . . , (1, . . . , 1)} has |A| = 2 |U | elements. Notice that the action a = (0, . . . , 0) represents the case
where none of the control actions are applied.

2.3 Markov Decision Process for SDDS
In this section, we de�ne a Markov decision process (MDP) for the SDDS and the control actions de�ned in the previous sec-
tions. An MDP for the set of states S and the set of actions A, consists of transition probabilities Pax,y and associated costs
C (x, a, y), for each transition from state x to state y due to an applied action a.

2.3.1 Transition Probabilities

The application of an action a results in a new SDDS, F ′a = {Fk (x, a), p↑k , p
↓
k}

n
k=1. Then, for each state action pair (x, a), x ∈

S, a ∈ A, the probability of transition to each state yupon execution of actiona from state x,Pax,y, is computed using Equation (1)

with the fk replaced by Fk, i.e., Pax,y =
∏n

k=1 θ
F ′a
k,x (yk).

2.3.2 Cost distribution

We de�ne the cost of going from state x to state y under action a, C (x, a, y), as a combination of two additive costs, one for
actions Ca and one for states Cy:

C (x, a, y) = Ca + Cy
The application of control edges or nodes have a penalty, ce and cv, respectively, that represent expenses associated to the use of
technologies and drugs required to silence nodes and edges. Thus, we simply determine the cost of actions as Ca = cvNv + ceNe
whereNv andNe are the number of applied control nodes and edges in a given action a. The cost of ending up in a state y is the
weighted distance between state y and a user speci�ed desirable state s∗.

Cy =
N∑
k=1

wk |yk − s∗k |

where wk are user speci�ed weights. Note that if all the weights are one, then Cy is simply the Hamming distance between y
and s∗.

2.4 Optimal Control Policies
A deterministic control policy π is de�ned as a set π = {π0, π1, π2, . . . }, where the πt : S → A is a mapping that associates a
state x(t) to an action a at time step t. We formulate the optimal control problem for in�nite horizon MDPs with discounting
cost as described in (Youse� et al., 2012). Given a state x ∈ S, a control policy π, and a discounting factor γ ∈ (0, 1), the cost
function V π for π, is de�ned as:

V π (x) =
∞∑
t=0

γtC (x(t), a)
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where C (x(t), a) represents the expected cost at step t for executing the policy π from state x, C (x(t), a) = IEy [C (x, a, y)]. We
also de�ne the Q-function for π (as in (Kearns et al., 2002)) by

Qπ (x, a) = C (x(t), a) + γIEy [V π (y)]

The goal is to �nd the optimal policy π∗ = {π∗0 , π∗1 , . . . }, where π∗t : S → A, t = 1, 2, . . . , that minimizes the function cost
for all states. The cost function associated with π∗ is V ∗ (x) = minπ V π (x) for all x ∈ S. Similarly, for the optimal policy,
Q∗ (x, a) = minπ Qπ (x, a). It has been shown (Youse� et al., 2012) that the optimal cost function V ∗ satis�es the Bellman’s
principle:

V ∗ (x) = min
a∈A

[
C (x, a) + γIEy [V ∗ (y)]

]
= min

a∈A
Q∗ (x, a), for all x ∈ S

The optimal policy for the MDP de�ned for SDDS is a stationary policy in which every state is associated with an action. We
can determine π∗ with the help of an iterative algorithm called value iteration (Bertsekas, 2005).

Algorithm 2 Sparse sampling algorithm for sequential actions

Require: A SDDS F =
{
fk, p↑k , p

↓
k

}n
k=1

, A, h, c, s, noise: g.
Ensure: Optimum combinations of actions (a1, a2)∗ for state s.

1: i∗ = argmini=1,...,A (RecursiveQLW(s, h, SDDS, i,L,W ))
2: (a1, a2)∗ = ActionHash(i∗)
3: return a∗
4: function RecursiveQLW(s,h,SDDS,a,L,W)
5: if h = 0 then
6: return 0
7: Q = 0,C = 0, y = s
8: (a1, a2) = ActionHash(i)
9: for i=1,. . . , c do

10: for l = 1, . . . , L/2 do
11: y =NextState(SDDS, y, a1, g)
12: for l = 1, . . . , L - L/2 do
13: y =NextState(SDDS, y, a2, g)
14: for l = L+1, . . . , W do
15: y =NextState(SDDS, y, 1, g)
16: Q = Q + mini=1,..., |A |{RecursiveQLW(y, h − 1, SDDS, i)}
17: C = C + C (s, a1, a2, y,L,W )
18: return C

c +
γ
cQ

19: function NextState(SDDS,s,a,g)
20: if rand < g then
21: return random state from S.
22: else
23: return SDDS.nextstate(s, a)

2.5 Approximating an optimal control policy for efficiency

The value iteration algorithm for computing the optimal control policy might become prohibitive for networks of 20 or more
nodes. Therefore, for large networks we will use approximation techniques to estimate the control policy. For details on approx-
imation methods see (Bertsekas, 2005; Kearns et al., 2002; Sutton and Barto, 1998). The approximation technique reduces the
control problem into estimating the best action for a given state s0 using only local information about the state space obtained
by sampling from the state s0. We developed and approximation algorithm for GRN modeled with SDDS. We note that, it can
be shown that the approximation method that we use here provides a good estimate function (or near optimal function) to the
optimal cost function as was shown for general generative models in (Kearns et al., 2002).

Now we describe the approximation algorithms. Instead of computing an in�nite horizon cost value functionV π (s) under
a policy π, the approximation creates a sub-MDP of �nite horizon h by sampling the neighborhood of initial state s0. The total
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expected cost function of the sub-MDP under a policy π is

V π
h (s0) = IE

[
h−1∑
t=0

γtC (x(t), a)
]

The optimal cost over the sub-MDP isV ∗h (s) = minπ V π
h (S). The approximation algorithm computes an estimate V̂ ∗h (s0) of the

optimalV ∗h (s0) by performing a sampling of the sub-MDP in the neighborhood of s0. In Algorithm 1 we provide a pseudo-code
of the approximation algorithm that was adapted for SDDS. The algorithm requires the SDDS, the set of actionsA, the state s0,
and the parameters that determine the accuracy and computational e�ciency, h and c. The parameter h is the �nite horizon of
the sub-MDP. The parameter c is the number of samples per action. Importantly, the time complexity does not depend on the
size of the state space of system. Finally, the Algorithm 1 also requires a noise parameter g. The role of the noise is to make the
system ergodic.

The approximation algorithm can be adapted to cyclic interventions in which actions have a duration period of L steps,
and are followed by a recovery period (without intervention) of W -L steps (Youse� and Dougherty, 2014; Shmulevich and
Dougherty, 2010). These type of interventions not only simulate more realistic therapeutic scenarios but result in methods that
are computationally less expensive, as the number of considered policies are smaller than the number of policies in which actions
can change every time step. For the cyclic intervention, every decision epoch consists ofW steps. The approximation algorithm
then creates a sub-MDP of h decision epochs by sampling the neighborhood of s0. The total expected cost for this sub-MDP
under a policy π is

V π
W ,h (s0) = IE

[ h−1∑
k=0

γkW C̃W (sk, a)
]

where C̃W (sk, a) = IEs′ [CW (sk, a, s′)] is the expected cost over a periodW starting at state sk under action a, andCW (sk, a, s′) =
LCa+Cs′ . Similar to the general case, the approximation computes an estimate of the optimal policy that generate the minimum
possible V π

W ,h (s0). In Algorithm 3 we provide a pseudo-code of the approximation algorithm adapted to cyclic policies.

Algorithm 3 Sparse sampling algorithm for cyclic policies

Require: A SDDS F =
{
fk, p↑k , p

↓
k

}n
k=1

, A,L,W , h, c, s, noise: g.
Ensure: Optimum action a∗ for state s.

1: a∗ = argmina∈A (RecursiveQ(s, h, SDDS, a))
2: return a∗
3: function RecursiveQ(s,h, SDDS, a)
4: if h = 0 then
5: return 0
6: Q = 0,C = 0
7: for i=1,. . . , c do
8: for j=1,. . . , L do
9: y = s

10: y =NextState(SDDS, s, a, g)
11: for j=L+1,. . . , W do
12: y = s
13: y =NextState(SDDS, s, a=0, g)
14: Q = Q + minu∈A{RecursiveQ(y, h − 1, SDDS, u)}
15: C = C + CW (s, a, y)
16: return C

c +
γW
c Q

3 Results and Applications
To test the e�ciency and accuracy of our methods we applied them in published models of di�erent sizes. The size of the test
models are 6, 16, and 60 nodes. For the small network (with 6 nodes) we computed the exact control policy for the system.
Then we used the approximation algorithm to compute an approximated policy for states of interest to compare it with the
exact optimal policy obtained by value iteration. For the larger networks, only the approximated policy was computed and then
we performed simulations to validate the e�ectiveness of the approximated policies.
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Figure 1: Reduced T-LGL network adapted from (Saadatpour et al., 2011). Control nodes (in gray) represent the deletion of
FLIP (FLIP = OFF or x2 = 0) and the constant expression of Fas (Fas = ON or x3 = 1).

Figure 2: Optimal control policy for the reduced T-LGL network obtained by value iteration. Two controls have been consid-
ered, FLIP = OFF (x2 = 0) and Fas = ON (x3 = 1). Arrows in green represent no control, arrows in blue represent the control
of the node FLIP (x2 = 0), arrows in orange represent the control of the node Fas (x3 = 1), and the arrows in red represent the
control of both nodes. The colored thick arrows show the most likely transition while arrows in gray represent other possible
transitions.
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(a) Approximations with h = 2 and c = 6.
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(b) Approximations with h = 3 and c = 6.

Figure 3: Statistics from using the approximation algorithm for the 6 nodes T-LGL network for the state 110000. Algorithm 1
was used 100 times. The vertical axis shows the frequency of control actions predicted by the approximation algorithm. The
horizontal axis shows all possible control actions.

3.1 T-LGL model
Cytotoxic T-cells are part of the immune system that �ght against antigens by killing cancer cells and then going through
controlled cell death (apoptosis) themselves. The T-cell large granular lymphocyte (T-LGL) leukemia is a disease where cy-
totoxic T-cells escape apoptosis and keep proliferating. A Boolean network model for this system has been built in (Zhang
et al., 2008), and subsequently, steady state analysis for control targets identi�cation has been performed in (Saadatpour et al.,
2011; Zañudo and Albert, 2015). This network has 60 nodes; the update functions can be found in the following GitHub site:
https://github.com/boaguilar/SDDScontrol.

In order to exhibit an exact control policy we �rst use a reduced version of the 60-node model (see Figure 1) that was given
in (Saadatpour et al., 2011). The reduced network considers the following nodes:

x1 = S1P, x2 = FLIP, x3 = Fas,
x4 = Ceramide, x5 = DISC, x6 = Apoptosis.

and the following Boolean rules,

f1 = x4 ∧ x6, f2 = x5 ∧ x6, f3 = x1 ∧ x6,
f4 = x3 ∧ x1 ∧ x6, f5 =

(
x4 ∨ (x3 ∧ x2)

)
∨ x6, f6 = x5 ∨ x6.

This reduced T-LGL system has two steady states, one that represents the normal state, 000001, where Apoptosis is ON and the
other, 110000, that represents the disease state, where Apoptosis is OFF.

We used the method given in (Murrugarra et al., 2016) to identify control targets in this network that can stabilize the system
in a desirable steady state. Here, we consider the controls that represent the deletion of FLIP (FLIP = OFF or x2 = 0) and the
constant expression of Fas (Fas = ON or x3 = 1). Simultaneous application of these controls will result in the �xed point 001001
that is globally reachable. Note that this new �xed point has x6 = 1 which means that Apoptosis is ON and thus we can use this
�xed point as a desirable state. Using these controls we computed an optimal control policy for the system. Since we have two
controls, there are four possible actions: 00 (no intervention), 01 (deletion of FLIP), 10 (constant expression of Fas), and 11
where both controllers are needed (x2 = 0 and x3 = 1). Figure 2 shows the control policy where transitions are marked by colors,
arrows in green mean no control, arrows in blue represent the control of the node FLIP (x2 = 0), arrows in orange represent the
control of the node Fas (x3 = 1), and the arrows in red represent the control of both controls. Notice that in Figure 2 only few
states require intervention. Especially, the disease state 110000 and the states that were in the synchronous basin of attraction.
Also in Figure 2 notice that the controls are only needed transiently, for one step, and then no control is required to direct the
system into the desired �xed point.

To test the e�ectiveness of our method, we applied the approximation algorithm for the disease state, 110000, of the reduced
network. Figure 3 shows that we our method recovers the exact policy with high probability. Notice that as the parameter h
increases the accuracy of the prediction improves.

https://github.com/boaguilar/SDDScontrol
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States Binary Expression
Cycle state 111111011101111110110010110101001110110100011010101111110100
Cycle state 101111011101111110110010110101001110110100011010101111110100
Cycle state 001111011101111110110010110101001110110100011010101111110100
Cycle state 011111011101111110110010110101001110110100011010101111110100
Fixed point 000000000000000000000000000000000000001000000000010000110100

Table 1: States of the synchronous 4-cycle and the �xed point for the 60 nodes T-LGL network. The bits in bold correspond to
the expression level of the node Apoptosis. Thus, the periodic cycle corresponds to the disease state (where Apoptosis is OFF)
and the �xed point corresponds to the normal cell state where apoptosis is ON.
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(a) Approximations with cyclic policies, L = W = 2, and h = 3 and
c = 6.
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(b) Approximations with cyclic policies, L = W = 2, and h = 4 and
c = 6.

Figure 4: Statistics from using the approximation algorithm for the 60 nodes T-LGL network for the state in Equation 3. Algo-
rithm 3 was used 100 times. The vertical axis shows the frequency of control actions predicted by the approximation algorithm.
The horizontal axis show all possible control actions. The simulations contain noise of p=0.05.

For the model with 60 nodes, we can no longer calculate the exact optimal control policy. The state space of this system
has a size of 260 = 1.1529 × 1018. Thus, we only use the approximation method for this case. By simulation we identi�ed a
(synchronous) limit cycle of length 4 and a �xed point, see Table 1. The limit cycle represents the disease state (where Apoptosis
is OFF) while the �xed point the normal state (where Apoptosis in ON).

For the model with 60 nodes, we also used the same control actions that we used for the reduced model. That is, we consid-
ered the controls that represent the deletion of FLIP (FLIP = OFF or x44 = 0) and the constant expression of Fas (Fas = ON
or x39 = 1). Simultaneous application of these controls will result in a new �xed point (given in the last row of Table 2) that has
x50 = 1 which means that Apoptosis is ON and thus we can use this �xed point as a desirable state. We applied the approximated
algorithm (Algorithm 3) for each state (see Table 1) in the limit cycle with the goal of driving the system away from this cycle.
Figure 4 shows the statistics after 100 runs of the approximation algorithm for one of states (the third cycle state in Table 1) of
the limit cycle, namely, the following state,

001111011101111110110010110101001110110100011010101111110100 (3)

Figure 4 shows that we get the policy 11 with high probability. That is, we need both controls. We also get the same control
policy with high probability for the other cycle states (data not shown). To test the e�ectiveness of the high probability policy
in Figure 4 we simulated the system from the cycle states in Table 1.

3.1.1 P53-mdm2 network

The tumor suppressor protein p53 can induce cycle arrest or apoptosis in the presence of DNA damage (Geva-Zatorsky et al.,
2006; Alon, 2019). A Boolean network model that reproduces the known biology for this system has been built in (Choi et al.,
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States Binary Expression
Cycle state 111111011101111110110010110101001110110100011010101111110100
Next state 101111011101111110110010110101001110111101001010101111110100
Next state 001111011101111110110010110101001110111101101010001111110100
Next state 011111011101111110110010110101001110111101101110011111110100
Fixed point 000000000000000000000000000000000000001000000000010000110100
Cycle state 101111011101111110110010110101001110110100011010101111110100
Next state 001111011101111110110010110101001110111101001010101111110100
Next state 011111011101111110110010110101001110111101101010001111110100
Next state 111111011101111110110010110101001110111101101110011111110100
Fixed point 000000000000000000000000000000000000001000000000010000110100
Cycle state 001111011101111110110010110101001110110100011010101111110100
Next state 011111011101111110110010110101001110111101001010101111110100
Next state 111111011101111110110010110101001110111101101010001111110100
Next state 101111011101111110110010110101001110111101101110011111110100
Fixed point 000000000000000000000000000000000000001000000000010000110100
Cycle state 001111011101111110110010110101001110110100011010101111110100
Next state 011111011101111110110010110101001110111101001010101111110100
Next state 111111011101111110110010110101001110111101101010001111110100
Next state 101111011101111110110010110101001110111101101110011111110100
Fixed point 000000000000000000000000000000000000001000000000010000110100

Table 2: Simulations from the states of the limit cycle for the 60 nodes T-LGL network. The �rst column indicates an achieved
path under control. The control policy is the same as in the small example. That is, in all cases the system escapes the disease
attractor (see Table 1) and converges to a new �xed point given by the controls.

All States States of Limit Cycle
0111110110110100

216 = 65536 1101010011110100 1010010011010100 0011010010010100
possible states. 1101110111110100 1000010011010100 0011110110010100
Edge controls Edge controls Edge controls Edge controls
mdm2→ p53 p53→Wip1 mdm2→ p53 p53→Wip1
p53→Wip1 p21→ Caspase p53→Wip1 mdm2→ p21
mdm2→ p21 mdmx→ p53 p21→ Caspase p21→ Caspase
p21→ Caspase Bcl2→ Bax Bcl2→ Bax mdmx→ p53
ATM→ Rb Bcl2→ Bax
mdm2→ Rb
mdmx→ p53
Rb→ E2F1
Bcl2→ Bax

Table 3: Control policy for the 7 states of the limit cycle in the p53-mdm2 network. The �rst column has the 9 control edges
that allow to redirect the whole system towards the desired �xed point y0 given in Eq. 4. Columns 2–4 give the control edges
identi�ed by the approximation algorithm (Algorithm 3) for the states of the limit cycle. Edges in red indicate common controls
for the states in limit cycle. Figure 5 shows simulation results using these control policies.
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Figure 5: Simulations using the control policies given in Table 3 for the states of the limit cycle of the p53-mdm2 network. For
each cycle state, we applied the control edges given in columns 2–4 of Table 3. The smaller intermediate nodes indicate that the
controls have been applied twice, for 5 steps each time. The colors indicate the di�erent policies indicated in Table 3. Nodes
with the same color have the same control policy as speci�ed in Table 3.

2012). This network considers the following nodes:

x1 = ATM, x2 = p53, x3 = Mdm2, x4 = MdmX,
x5 = Wip1, x6 = cyclinG, x7 = PTEN, x8 = p21,
x9 = AKT, x10 = cyclinE, x11 = Rb, x12 = E2F1,
x13 = p14ARf, x14 = Bcl2, x15 = Bax, x16 = caspase.

The update functions for this model are provided at Github site https://github.com/boaguilar/SDDScontrol. We
note that the state space for this system has 216 = 65536 states.

In the presence of DNA damage the system has a unique (synchronous) limit cycle of length 7. The states of this limit cycle
are given in the �rst row of Table 3. Using the algebraic methods in (Murrugarra et al., 2016), we identi�ed control edges for this
network that stabilize the system in a (desired) �xed point. That is, deleting all these edges from the wiring diagram will result
in a system that has a single �xed point y0 that is globally reachable (Murrugarra et al., 2016). The new �xed point y0 is given in
Equation 4. The control targets consist of 9 control edges that are given in the �rst column of Table 3.

y0 = (1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1), (4)

We note that the state in Equation 4 represents cell death, where x2 = p53 and x16 = caspase are ON. Thus, we used this �xed
point as a desired state for our control objective.

We applied the approximation algorithm (Algorithm 3) using a cyclic policy with L = W = 5, and h = 2 and c = 3 for each
state in the limit cycle. After 100 runs of Algorithm 3, we obtained (with high probability) the control policies given in Table 3.
In columns 2–4 of Table 3 we group the states that have the same control policy.

To validate the e�ectiveness of the control policies given in Table 3, we performed simulations starting from each state of
the limit cycle using the control policies given in columns 2–4 of Table 3. The results of these simulations are given in Figure 5.
Figure 5 shows that the estimated policies are e�ective as it is possible to get to the desired �xed point y0 given in Equation 4
from each state of the limit cycle. The simulations were performed using the parameters speci�ed in the caption of Figure 5.

https://github.com/boaguilar/SDDScontrol
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4 Discussion and Conclusions

Finding optimal intervention strategies for GRN is an important problem in computational biology. Intervention strategies
consisting of combinations of control targets such as the knockout of a gene and the disruption of an interaction are becoming
more and more relevant (Lee et al., 2012; Choi et al., 2012; Erler and Linding, 2012; Zañudo et al., 2017). The problem of
computing a control policy that dictates what intervention to apply at each state of a system becomes computational prohibitive
for large networks (e.g., networks with more than 20 nodes). This paper focuses on approximation techniques based on Monte
Carlo sampling of the transition probabilities of generative models. More speci�cally, in this paper we provide approximation
algorithms to estimate the optimal control policy for a discrete stochastic system. The complexity of the proposed algorithms
does not depend on the size of the state space of the system, it only depends on the sampling size and the depth of the iterations.
This feature makes the proposed algorithms e�cient and they can be applied to a large GRN. Importantly, it can be shown
that the approximation method that we used in this paper provides a good estimate function (or near optimal function) to the
optimal cost function as was shown for general generative models in (Kearns et al., 2002).

Approximation techniques are useful when trying to compute a control policy for a large system. There are algorithms to
calculate optimal control policies (Abul et al., 2004; Datta et al., 2004; Pal et al., 2006; Youse� et al., 2012; Chen et al., 2012)
but the computational complexity of these algorithms, which is at least exponential in the size of the state space, is very high. For
instance, for the 60 nodes model that was discussed in the results section, the state space has 260 = 1.1529× 1018 states. Thus, it
becomes unfeasible to calculate an exact control policy for this system. The approximation technique that was used in this paper
was very e�cient for this model.

The methods presented in this paper were validated using a T-LGL network of 60 nodes and a network for the p53-mdm2
system of 16 nodes. The T-LGL system has two attractors, a limit cycle that represents a disease state and a �xed point represent-
ing a normal state (apoptosis). The approximation algorithm was applied to calculate a control policy that allows the system to
escape from the disease state and directs the system towards the desired �xed with high probability. Likewise, for the p53-mdm2
system, the approximation algorithm successfully generates a control policy that drives the system towards a desired �xed point.

For our applications, we used Algorithms 1 and 3 and these can be modi�ed to incorporate more realistic control strategies
considering a number of steps for recovery such as the cyclic and acyclic interventions that was considered in (Youse� et al., 2012).
We can also adapt our approximation algorithms for sequential interventions such as the interventions strategies described in
(Lee et al., 2012), where the order of the control actions to be applied matters. Algorithm 2 provides a pseudocode for sequential
interventions for SDDS. Moreover, the methods developed in this paper can be applied to multistate discrete models of GRN
(Sordo Vieira et al., 2019; Veliz-Cuba et al., 2010) and Probabilistic Boolean Networks PBN (Shmulevich et al., 2002). Finally,
the approximation method is suitable for a planning strategy, in which simulations are performed under control; the method is
applied to every state attained.

We remark that the e�ciency of the method depends on the topology of the network, particularly on the maximum in-
degree. For instance, the T-LGL model of 60 nodes has a maximum in-degree of 7 while the p53 network of 16 nodes has a
maximum in-degree of 10. Although the T-LGL network is larger than the p53 network, it has a smaller maximum in-degree.
As a result, the approximation algorithm was more e�cient for the 60-node model than for the 16-node model. Also, the noise
added to the system (see Section 2.5) can a�ect the e�ciency of the algorithm. In large systems such as the T-TLG network, the
noise can make the system to jump into a random state and it might take a large number of steps to get to the desired target state.
The noise is not required for controllable systems, where every state is reachable under the control.

Finally, we implemented the proposed control algorithms in C++ and our code is freely available through the following
GitHub website: https://github.com/boaguilar/SDDScontrol. This website also contains the associated �les of the
examples discussed in this paper.
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