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ABSTRACT
As a pathogen spreads throughout a human population network, understanding
the time span between the first reported infection case and the establishment of
local transmission relies on the ability to decompose infection incidence into lo-
cal and travel cases, depending on whether the infected individual was exposed
to the pathogen in their location of residence or elsewhere. However, most case
data reported to public health agencies do not distinguish between local and travel-
associated cases, hampering analysis of the critical early stages of the epidemic
spread. We introduce an algorithm, based on the shape of the cumulative incidence
curve, to estimate the time a pathogen takes to become locally established, based
on the pathogen’s transmission and recovery rates and the network connectivity of
the human population. This algorithm can predict the onset of an epidemic without
considering any future case data, making it useful for tracking epidemics as they
occur.
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1 Introduction
The 21st century presents public health challenges in the form of increasing risk of global epidemics, as an increase in human
mobility now is the major driver of infectious disease emergence at domestic and global scales (Cohen, 2000). These include not
just contagious diseases such as in�uenza (Viboud et al., 2006), but also vector-borne diseases such as Zika, chikungunya, and
dengue (Lounibos, 2002; Benedict et al., 2007), that are spread primarily via the movement of infected humans. Understanding
the in�uence of human mobility and environmental factors on spread of epidemics relies on the ability to distinguish between
autochthonous (i.e. locally acquired) and imported incidence cases as these outbreaks are occurring (Nah et al., 2016). Therefore,
development of techniques to di�erentiate between local and travel associated transmission may o�er new insights into the early
stages of an epidemic that are critical to public health management decision making (Adams and Kapan, 2009).

Typically, an infectious disease enters a human population center (e.g. a city, state, or country) via the introduction of a small
number of infectious individuals. The shape of the incidence curve (i.e., the graph of the cumulative number of cases over time)
is initially linear, referred to as the “noisy regime” in Pastor-Satorras et al. (2015). This regime is characterized by a seemingly ran-
dom assortment of mostly imported cases (i.e., infected individual entering the population) and a few autochthonous, or local
cases (i.e., transmission occurring within the population) (Figure 1). After a short period of time, the disease spreads within the
local population, the growth of the incidence curve becomes exponential, and the outbreak becomes an epidemic. A variety of
analytical (Valdano et al., 2018), numerical (Zhang and Jin, 2011), and empirical (Riou et al., 2017) research has examined the en-
vironmental and social conditions that promote the outbreak of epidemics, in terms of theR0 factor (i.e., the average number of
secondary cases arising from a single primary case). Recent research has also explored how temporal and spatial heterogeneity in
human population density a�ects the shape of the outbreak curve (Chowell et al., 2016). However, little research has considered
the dynamics of the noisy regime, or the duration between the introduction of the �rst infected individual and the development
of the epidemic, a critical period for e�ective containment of the outbreak. The structure of the human movement network
may alter the dynamics of the noisy regime, in terms of how an outbreak develops from imported cases, and merits thorough
study.
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Human movement can be modeled with a simple network structure, in which each node represents a population center,
and edges represent travel routes between nodes. Nodes are typically weighted by their population size, or subpopulation, and
edges are weighted by the number of individuals traveling between nodes per unit time. Previous research demonstrates that the
structure of the human mobility network, including heterogeneity and mobility rates, has a signi�cant e�ect on other metrics
of epidemic severity such as R0, peak prevalence, and epidemic duration. For example, highly clustered networks tend to have
longer epidemic durations but lower maximum rates of infection, and networks with high rates of community mixing can have
up to double the total number of cases (Carnegie, 2018). In an infectious contact network structure, the assumption that human
contact is homogeneous may lead to overly conservative estimates ofR0 (Trapman et al., 2016). Even networks with similar rates
of clustering and connectivity may exhibit widely varying epidemic properties, such as epidemic duration and peak prevalence,
depending on the parameters used to construct the models (Ball et al., 2013).

To understand the dynamics of the noisy regime, it is imperative to be able to distinguish between local cases and imported
cases. This is a major challenge to empirical study of the early dynamics of an outbreak, because in the case of most epidemic
outbreaks, for matters of privacy, government o�cials only report the total number of infected individuals within their jurisdic-
tions (e.g. a public health district or municipality) and do not distinguish between local and imported cases. Alongside other
uncertainties such as reporting bias and inconsistency, it is therefore di�cult to empirically study the noisy regime, but a better
understanding of the underlying dynamics would help to inform the in�uence of human mobility on the severity of an epidemic
within a population.

Here, we test the hypothesis that by analyzing the shape of the cumulative incidence curve, we can infer the underlying
dynamics of local and imported cases. Speci�cally, while the cumulative incidence curve is dominated by imported cases, the
shape of the curve is linear or sub-linear (I (t) ∼ tn, n ≤ 1 or I (t) ∼ log(t)), because we expect the rate of imported cases to
be relatively constant with time. When local cases begin to dominate, the total incidence curve becomes super-linear, typically a
polynomial of degree greater than 1, or exponential in idealized circumstances. There are two advantages for using this method to
detect an epidemic outbreak, de�ned as super-linear growth in total cases. First, it depends only on properties of the cumulative
incidence curve, even if the relative proportions of local and imported cases are unknown. Second, the algorithm proposed in
this article can detect the establishment of local transmission absent any future incidence data, making it a reliable prediction
method for epidemics in progress.

In this paper, we use analytical, numerical, and empirical analyses of epidemics to study the duration in time between the
introduction of the �rst infected individual and the onset of super-linear incidence growth within a population, which we refer
to as the “local establishment time.” First, we introduce an analytical model of an epidemic on a human population network and
show that the local establishment time can be predicted by the disease’s transmission and recovery rate, human di�usion, and
each node’s degree of connectivity. We then simulate these outbreaks on a variety of randomized networks to study the e�ects
of network graph structure on the local establishment time. Finally, we study the western hemisphere chikungunya outbreak of
2014–2015, a recent case study for which published, public human case data are decomposed into local and imported cases, to
validate our hypotheses.

1.1 Introduction to SIR Models

The basic SIR (Susceptible-Infected-Recovered) model is a mathematical framework used in epidemiology to describe the dy-
namics of an infectious disease. Individuals from an at-risk population of size N are classi�ed among three states (i.e., suscepti-
ble, S; infected, I ; or recovered,R). Di�erential equations describe the rate of transition between states based upon transmission
and recovery rates derived from empirical data. A metapopulation SIR model is an elaboration of the basic model that considers
a network of population centers or nodes, each with its own set of SIR equations, and the rates of human migration between
nodes (Anderson and May, 1984).

Consider an undirected mathematical graph of nodes labeled i = 1, . . . , n. The network as a whole represents the metapopu-
lation network, whereas each node represents a local human population (Ray et al., 1997). Parameters for the simulation include
an initial condition, an infection rate β (the rate at which the disease travels between individuals), a recovery rate µ (the rate at
which an individual recovers from the disease), and a human mobility matrixMij (the rate of movement from node i to node j).
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“Noisy 
 Regime”

Introduced

Figure 1: An illustration of the cumulative epidemic curve for a population, and the classi�cation of the population into one
of four di�erent states based on the curve.

Thus, the metapopulation SIR model for a network of size n can be expressed as a set of 3n ordinary di�erential equations as:
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(1)

While much of prior research on metapopulation SIR models has focused on the implications of network topology for the
epidemic basic reproduction number, R0 = β

µ (Apolloni et al., 2014), our study investigates how network properties impact
the time between the introduction of an infected individual into a network, the arrival of the �rst infected individual to a node,
and the establishment of local transmission within a node. Speci�cally, we apply a more holistic approach in which rather
than classifying individuals as susceptible, infected, or recovered, we classify entire nodes into one of four states based on the
cumulative growth of infected individuals (Figure 1).

• At t = 0, the �rst individual within the network graph becomes infected. Any nodes with no infected individuals are
labelled as “Susceptible.”

• At t = t0, an infected individual enters a node. The epidemic curve is roughly linear, since most cases arise from traveling
individuals, and the node is classi�ed as “Introduced.” Pastor-Satorras et al. (2015) refers to this period of time as the
“noisy regime.”

• At t = ti , local transmission of the disease overtakes the dynamics of the epidemic curve within the node. The epidemic
curve is now exponential, and the node is classi�ed as “Infected.”

• At t = tr , the number of infected individuals approaches a maximum, and the cumulative infection time series becomes
convergent. The node is �nally classi�ed as “Recovering.” The Recovering state is not discussed in this study, because as
described in Section 3.3, it is di�cult to identify in empirical situations.

Here, we are primarily interested in the time duration between t = t0 and t = ti , the time between the introduction of
the epidemic and the onset of local transmission in a speci�c node, which in this paper we de�ne as the local establishment
time. We address three questions: (1) How e�ectively can we detect the local establishment time based on the properties of the
cumulative incidence curve? (2) How do node properties (e.g., node connectivity and centrality) alter the local establishment
time of an infectious disease in simulated networks? (3) Do the same principles apply to the empirical example of the spread of
chikungunya virus in the western hemisphere? Our �ndings may be consequential for timely and e�ective allocation of public
health resources during the initial stages of an infectious disease outbreak.
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2 Methods

2.1 Metapopulation SIR Model
We use Equation (1) as the foundation for our metapopulation SIR model. In Section 3.2, we experiment with several types of
network graphs to test the hypothesis that the distribution of high and low connectivity nodes can a�ect the local establishment
time throughout the network. These networks are described in more detail in that section.

Along with the mathematical graph (or node-edge arrangement), a metapopulation network is also characterized by its mo-
bility matrix, for which Mij represents human movement per unit time from node i to node j. In a tra�c dependent mobility
rate model, the probability that an individual migrates per unit time is given by the di�usion constant p, with a value between
0 and 1 (Colizza and Vespignani, 2008). The simplest possible mobility matrix is de�ned as Mij = p

ki , where ki is the degree
of connectivity of node i, but this model unrealistically assumes that all human movement is homogeneous. A more realistic

tra�c dependent model assumes that migration rates between nodes is heterogeneous, with a mobility matrix Mij = pw0 (kikj )θ

Ak1+θ
i

,
where w0 and θ depend on the speci�c mobility system (θ = 0.5 is a common metric for air routes (Barrat et al., 2003)), and A
is a calibration factor chosen such that the total fraction of individuals migrating from a node per unit time adds up to p. The
advantage of the tra�c-dependent model, as discussed in Section 3.1, is its relative ease at deriving analytical solutions to the
metapopulation SIR equations. The disadvantage of this model is that for nodal subpopulations to be convergent in time, it is
required that the initial population of each node be directly proportional to k1+θ .

An alternative to the tra�c dependent mobility matrix is the population dependent mobility matrix, which is designed such
that the total population in each node is convergent regardless of the initial conditions. In this model, a �xed number of people
migrate between any given pair of nodes per unit time, and the mobility rate is inversely proportional to the population of each

node,Mij = w0 (kikj )θ
Ni

. The disadvantage of this model is that �nding an analytical solution in the early outbreak limit is di�cult.

2.2 Local Establishment Time
The metapopulation SIR model is run in MATLAB, based on a set of 3n ordinary di�erential equations (Keeling and Rohani,
2007). The simulation is set to run for a su�cient duration that the epidemic can spread to every node in the network. As the
simulation runs, for each node, the values of S, I, and R are computed as time series. We hypothesize that the cumulative infected
cases for each node initially will be linear, as infected individuals enter the node, and then will transition to an exponential curve
as the disease becomes established locally. For each node, we set t0 as the time at which the �rst infection is reported. We use the
deceleration of growth parameter, as de�ned in Chowell et al. (2017), to describe the shape of the curve with a single numeric
value. We can use this parameter to compute the �rst moment at which the incidence curve becomes super-linear. This point in
time is estimated as the moment at which local transmission dominates the dynamics of the incidence curve.

The deceleration of growth parameter, which here we call g, is de�ned implicitly by the equation

dI (t)
dt

= rI (t)g, (2)

where I (t) is the cumulative number of infection cases, and r and g are �tting parameters. It is straightforward to demonstrate
that I (t) is sub-linear if g < 0, linear if g = 0, super-linear (e.g. quadratic, cubic, etc.) if g > 0, and exponential if g = 1.

The deceleration of growth parameter at time t can be explicitly calculated from a data set with the equation

g = 1 −
[
I ′(t)
I (t) ∗ (t − t0)

]−1
, (3)

where t0 is the moment in which the �rst infection case is reported in the subpopulation. This equation is convenient as, unlike
in the original de�nition, it requires no curve �tting algorithm.

2.3 Empirical Data
The chikungunya virus, following a large outbreak in Kenya in 2004, underwent a rapid global expansion across Africa and Asia
(Staples et al., 2009), with localized outbreaks in Europe (Tomasello and Schlagenhauf, 2013), extensive outbreaks throughout
the Caribbean, Central and South America, and Mexico, and locally-acquired cases in Florida the following year (Weaver and
Forrester, 2015). As Aedes mosquitoes only have a �ight range of at most a few kilometers (Briegel et al., 2001), the spread
of chikungunya and other epidemics throughout the world, especially at large spatial scales, are driven primarily by human
movement (Moore et al., 2018). An important question in disease ecology concerns the drivers of disease spread and identifying
risk factors, particularly in the early stages of an outbreak, to inform allocation of limited public health resources such as vector
control, education e�orts, and vaccinations (Steele et al., 2016).
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The 2014 chikungunya outbreak throughout the western hemisphere was chosen for empirical analysis because the data set is
one of the few publicly available data sets that explicitly distinguishes between local and imported cases (PAHO, 2015). Infection
cases were reported to the Pan-American Health Organization by 50 nations or territories throughout the western hemisphere on
a weekly basis. Cases are classi�ed as “Con�rmed” if the patient was positive for chikungunya virus as determined by laboratory
testing, “Suspected” if the patient exhibited the symptoms of chikungunya virus but was not tested, and “Imported” if the
patient recently had traveled in another a�ected region. For the purposes of this analysis, the number of cases per geographic
unit per time step is calculated as the sum of con�rmed and suspected cases.

Because some countries stopped reporting cases after the outbreak of an epidemic within their jurisdiction, these data are
not practical for evaluating the duration or peak prevalence of the epidemic (Lipsitch et al., 2015). In addition, some countries
reported cases at irregular intervals, which may give the false impression that the epidemic halted and restarted over the course
of the year. However, these data are still useful for measuring the local establishment time within each region, because reporting
tends to be high during the early stages of a disease outbreak.

The data are publicly available as weekly reports, and from each report the number of cases, divided into Suspected, Con-
�rmed, and Imported, were manually transcribed into a spreadsheet. No data cleaning was necessary, besides �xing obvious
typographical errors such as transposed digits, and countries with ten or fewer con�rmed cases in 2014 were not considered in
our analysis because there were not enough data points to precisely compute the shape of the curve.

International tourism data for each country in 2014 were obtained by the World Bank (2019). This data set refers to the
total number of arrivals of non-resident visitors at national borders, including nationals residing abroad, per country per year.

3 Results

3.1 Analytical Model
The analytical model described in this section expands upon the analysis conducted by Colizza and Vespignani (2008), which
solves the metapopulation SIR equations under the assumption that each node’s population and tra�c is dependent on its
degree of connectivity, and in the asymptotic limit of an emerging outbreak. Statistically, a node of degree k is expected to have
an initial epidemic outbreak incidence curve function of

Ik (t) = B
k1+θ〈
k1+θ

〉 e(β−µ)t + Cke [ (1−p) (β−µ)−p]t (4)

where k is the node’s degree of connectivity, θ is the heterogeneity of movement constant, β and µ are the infection and recovery
rates, p is the di�usion constant (assumed to be the same for all nodes), and B and Ck are parameters determined by the initial
conditions. If it is assumed that the initial infected population is equally distributed across the entire grid, then B = Ī (0) and
Ck = Ī (0) (1− k1+θ/

〈
k1+θ〉), where Ī (0) represents the average number of infected individuals among all infected nodes at time

t = 0.
To develop an analytical model to estimate local establishment time, our goal is to study the logistic progression of an epi-

demic in an individual node, on the assumption that each of its adjacent nodes follow the statistical incidence curve expressed
in Equation (4). Our strategy is to consider an individual node of degree k that is initially uninfected. This node has neighbors
j = 1, 2, . . . , k each with degree kj . We assume that the neighboring nodes’ infection rates can be estimated by Equation (4). We
de�ne t = 0 as the moment when these neighboring nodes were �rst infected, and t = t0 as the moment when the individual
node in question becomes �rst infected. Therefore, the infection rate of this individual node, indicated by J , is given by

dJ
dt

= (β − µ)J (t) +
∑
j
(MjiIj −MijJ ) (5)

Substituting in Ikj from Equation (4) for Ij (t) in Equation (5), this equation becomes

dJ
dt

= ©«β − µ −
∑
j
Mkkj

ª®¬ J (t) +
∑
j
Mkjk

[
B

k1+θ〈
k1+θ

〉 e(β−µ)t + Cke [ (1−p) (β−µ)−p]t
]

(6)

Where Mkkj is the tra�c dependent model’s prediction of mobility rates between a node of degree k and a node of degree kj .
Note that with the assumption of constant di�usion, we can make some simpli�cations to the terms that are dependent on k
but not t: ∑

j
Mkkj = p (7)
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∑
j
MkjkB

k1+θ
j〈
k1+θ
j

〉 = Ī (0) ∗ p (8)

∑
j
MkjkCk =

∑
j
MkjkĪ (0)

©«1 −
k1+θ
j〈
k1+θ
j

〉 ª®®¬ = Ī (0) ©«
∑
j
Mkjk − p

ª®¬ (9)

In the tra�c dependent model, the
∑
j Mkjk term evaluates to

∑
j
Mkjk =

∑
j
p
w0 (kjk)θ

Ak1+θ
j

= p
kθ

〈k〉θ
∑
j

1
kj

(10)

Then Equation (6) simpli�es to

dJ
dt

= (β − µ − p)J (t) + Ī (0)pe(β−µ)t + Ī (0)p ©« kθ

〈k〉θ
∑
j

1
kj
− 1ª®¬ e [ (1−p) (β−µ)−p]t (11)

The solution to this equation is

J (t) = Ke(β−µ−p) (t−t0) + Ī (0)e(β−µ)t +
Ī (0)
β − µ

©«1 − kθ

〈k〉θ
∑
j

1
kj

ª®¬ e [ (1−p) (β−µ)−p]t (12)

where K is a constant chosen such that J (t0) = 0. Speci�cally,

K = −Ī (0)e(β−µ)t0 − Ī (0)
β − µ

©«1 − kθ

〈k〉θ
∑
j

1
kj

ª®¬ e [ (1−p) (β−µ)−p]t0 (13)

This equation simpli�es to

J (t) = Ī (0)
[
e(β−µ)t − e(β−µ)t0e(β−µ−p) (t−t0)

]
+
Ī (0)
β − µ

©« kθ

〈k〉θ
∑
j

1
kj
− 1ª®¬

[
e [ (1−p) (β−µ)−p]t0e(β−µ−p) (t−t0) − e [ (1−p) (β−µ)−p]t

]
(14)

This solution is a sum of six exponential curves, each proportional to the constant Ī (0). Very roughly speaking, the �rst
set of terms represents local infection cases, while the second set of terms represent travel cases, either imported or exported.
The exact values of β, µ, and p depend on the choice of time unit, however, β and µ are typically an order of magnitude smaller
than p (Cross et al., 2005). Therefore, the �rst term in Equation (14), Ī (0)e(β−µ)t is the only term with a positive exponent, and
will dominate the dynamics of the early outbreak fairly quickly. The question is pinpointing the moment in time at which this
occurs.

The sign of the second term depends on the sign of
(

kθ
〈k〉θ

∑
j

1
kj − 1

)
, which we call the “exchange term.” The exchange term

tends to be positively correlated with k and negatively correlated with the clustering coe�cient. In all of the randomly generated
scale-free network models that we tested, this term will be greater than zero if k is greater than the mean k, approximately zero
if k is equal to the mean, and less than zero if k is less than the mean. This is appropriate, because if we brie�y assume that

kj = 〈k〉, then this term simpli�es to
(

k
〈k〉

)1+θ
− 1. This implies that in high connectivity nodes, the net travel cases during

the initial outbreak will be positive, and in the low connectivity nodes, they will be negative. Although the travel case term will
always asymptotically approach zero over time, the sign of this term has implications for the short-term dynamics of the epidemic
curve. An example of this is shown in Figure 2. Note the slightly di�erent concavity of the initial epidemic curve depending on
whether the node’s degree of connectivity is greater than or less than the mean across the network.

In order to predict the local establishment time, our goal is to determine the moment in time, designated as ti , when the
epidemic curve described by Equation (14) transitions from a linear to a super-linear pattern. Since this is at heart an asymptotics
problem, there is not an explicit solution to this problem. However, the shape of the epidemic curve can be characterized by a
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(a)

(b)

(a)

(b)

Figure 2: An illustration of the epidemic outbreak curve, decomposed into local and travel cases, on a node with degree of
connectivity (a) greater than the mean and (b) less than the mean. The local establishment time is labeled as the �rst moment
when the total outbreak curve becomes super-linear.

deceleration of growth parameter, de�ned in Equation (2), and this transition occurs when the deceleration of growth parameter
�rst becomes positive.

Tracking the evolution of the epidemic curve shape over time is therefore as simple as computing the deceleration of growth
parameter over time. It is also straightforward to demonstrate that with common metapopulation SIR parameters (for example,
β = 0.04, µ = 0.02, p = 0.5), that the deceleration of growth parameter is initially negative as the curve is sub-linear. After
a short period of time, when the local infection case term begins to dominate the dynamics of the curve, the deceleration of
growth parameter increases past 0, at which point the curve transitions from sub-linear to linear to super-linear. Eventually,
the deceleration of growth parameter approaches a value close to 1, at which point the epidemic curve is exponential or nearly
exponential.

With this in mind, we de�ne the local establishment time, ti, as the moment when the deceleration of growth
parameter becomes greater than zero.

Fortunately, there are properties of the deceleration of growth parameter that make this easy to solve. We take the derivative
of Equation (2) and make a substitution to �nd

I ′′(t) = rgI (t)g−1I ′(t) = r2gI (t)2g−1 (15)

Note that since r2 and I (t) are always positive, the second derivative of I (t) has the same sign as g, the deceleration of growth pa-
rameter. Therefore, the local establishment time can also be de�ned as the moment when the second derivative of the cumulative
incidence curve transitions from negative to positive.

In the limiting case of k = kj = 〈k〉, the second term of Equation (14) vanishes, and the equation is reduced to

J (t) = Ī (0)
[
e(β−µ)t − e(β−µ)t0e(β−µ−p) (t−t0)

]
(16)

Setting the second derivative of J (t) equal to 0:

J ′′(t) = Ī (t)
[
(β − µ)2e(β−µ)t − (β − µ − p)2e(β−µ)t0e(β−µ−p) (t−t0)

]
= 0 (17)

we �nd an exact solution for the local establishment time:

ti − t0 =
2
p

log
(

p
β − µ − 1

)
(18)

This value is a baseline estimate for the local establishment time. We expect the local establishment time to be greater for
low connectivity nodes and smaller for high connectivity nodes. In the case of β = 0.04, µ = 0.02, θ = 0.5, and 〈k〉 = k,
we numerically computed ti − t0 for a range of values of k and p. Our results are shown in Figure 3. As expected, the local
establishment time is negatively correlated with k and with p, although both of these relationships are quickly convergent.

3.2 Numerical Simulation
We use a numerical simulation of a metapopulation SIR model to demonstrate that the deceleration of growth parameter can
be used to analyze the total (local and travel) cases to predict when the local cases are dominating the epidemic curve. For these
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Figure 3: Numerical solution to the local establishment time for a range of values of k and p, with β = 0.04, µ = 0.02, θ = 0.5,
and 〈k〉 = k.

simulations, we can verify our predictions with the decomposed local and travel epidemic curves, but this method will also prove
useful when these data are not available.

Our test cases include a scale-free network, with 5000 nodes and degree distribution law P (k) ∼ k−3 (Albert and Barabási,
2002), a small-world model with average connectivity of 9 (Watts and Strogatz, 1998), and a Delaunay triangulation model
consisting of nodes randomly arranged around a center point with an exponential distance distribution (Lee and Schachter,
1980). To brie�y summarize these networks, the scale-free model is characterized by a few highly connected hub nodes, the
small-world model has random edge connections across the network to increase centrality, and the triangulation model has all
adjacent nodes connected to increase clustering. Each of these simulations was run with β = 0.04, µ = 0.02, p = 0.5, θ = 0.5,
with a tra�c-dependent mobility model with N̄ = 1000. For each network, nodes are categorized according to their degree of
connectivity k and the mean degree of connectivity for that node and all of its neighbors, 〈k〉.

After the simulation is run, the evolving deceleration of growth parameter is computed for the total incidence curve of each
node. The local establishment time, the time between the �rst infected case and the moment at which the deceleration of growth
parameter exceeds zero, is recorded. To reiterate, this metric has two practical advantages: �rst, it only relies on the total incidence
curve, even if the decomposed local and imported curves are not known, and second, it can be computed in real time without
knowing any future data.

For these metapopulation SIR simulations, the local and imported incidence curves, designated IL (t) and II (t), are com-
puted by decomposing the di�erential equation for Ii (t) in Equation (1) as:

dIi
dt

= dIL,i

dt + dII ,i

dt
dIL,i

dt
= β SiIiNi

dII ,i

dt
=

n∑
j=1

MjiIj −
n∑
j=1

MijIi

(19)

For each node, the local crossover time is de�ned as the moment at which the local incidence curve �rst exceeds the imported
incidence curve. The local establishment time and the local crossover time are compared based on each node’s values of k and
〈k〉. We compare the local establishment time and the local crossover time to compare characterizations of the disease outbreak
based on the shape of the incidence curve or the number of infected individuals.

3.2.1 Results

The results of each simulation are shown in Figure 4. For each network model, the left hand side shows the total, local, and
imported incidence curves of 9 randomly selected nodes, sorted by k. Note that the time axis is de�ned relative to the moment
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of �rst introduction to each node. The right hand side shows a scatter plot of the local establishment time and the local crossover
time for each node, colored by the value of kθ/〈k〉θ .

By and large the analytical model presented in Section 3.1 proved to be a reliable prediction of the dynamics of the incidence
curve in each node. However, the analytical model overlooks the intricacies of mobility rates between nodes, especially nodes
whose value of k di�ers considerably from its neighbors.

The scale-free network has the least equitable distribution of nodal degree, and therefore has the most variance in local
establishment time among nodes (Figure 4a). There is a roughly inverse linear relationship between the natural log of the degree
and the local establishment time. Observing individual nodes, we observe three main dynamics regarding the local and imported
incidence curves.

1. The local and imported incidence curves both grow linearly, but the local incidence curve exceeds the imported incidence
curve almost immediately. This occurs in nodes with small k and small 〈k〉. In this simulation the local establishment
time tends to be close to 40, and the local crossover time is nearly 0.

2. The imported incidence curve is initially super-linear but decays quickly. This occurs in nodes with low k and high 〈k〉.
Essentially, a large number of infected individuals move into this node, faster than local growth. The total incidence
curve is super-linear to start, becomes sub-linear brie�y, then becomes super-linear again. In these situations, the local
establishment time is much longer than the local crossover time.

3. The local and imported incidence curves both grow linearly, but the imported incidence curve has a higher slope. When
the local incidence curve becomes super-linear, it eventually overtakes the imported incidence curve. This occurs in nodes
with higher k than 〈k〉, and these types of nodes are most frequent in scale-free models. In these cases, the local establish-
ment time is almost always shorter than the local crossover time.

For the scale-free model, the median local establishment time is 40 and the median local crossover time is 20. Nodes with
k > 〈k〉 tend to have the shortest local establishment time or the longest local crossover time, and those nodes with the highest
kθ/〈k〉θ ratio have a longer local crossover time than local establishment time.

As the small-world model has a more equitable distribution of nodal degree than the scale-free model, the local establishment
time was extremely consistent, with every single node having a value between 51 and 54. The local crossover time ranged between
0 and 36, and every node had a shorter crossover time than establishment time. As with the scale-free model, the nodes with the
highest kθ/〈k〉θ ratio also have the longest crossover time.

The Delaunay triangulation model, like the small-world model, has an equitable distribution of nodal degree, but most
nodes have a degree of connectivity between 4 and 8. As with the small-world model, most nodes have about the same local
establishment time, around 28, with the exception being nodes with degree greater than 8 or nodes on the outskirts of the
model. The nodes with high degree tend to have short local establishment times and long local crossover times, and the nodes
on the outer boundary of the network tend to have unusually long local establishment times.

3.3 Empirical Analysis
Finally, we used the 2014 chikungunya outbreak throughout the Western hemisphere as an example of the type of analysis that
can be performed with the techniques described above. Figure 5a shows the cumulative number of local (con�rmed + suspected)
and imported chikungunya cases throughout the western hemisphere, on a national spatial scale and a weekly temporal scale.
Most countries exhibit the pattern observed in numerical simulations: incidence curves are initially driven by a small number of
imported cases, and the epidemic curve is linear. After a short period of time, the growth in local cases overtakes imported cases,
and the total epidemic curve has a linear pattern. One major exception is the United States, which has high rates of international
entry and poor environmental suitability for the mosquito species that transmit chikungunya, but there are a few other countries,
such as Panama and Paraguay, where imported cases are consistently higher than local cases. A few small island countries with
irregular reporting patterns are not shown in this �gure.

The red ‘X’ on each plot shows the moment in time that the epidemic curve �rst becomes super-linear, calculated based
on the total number of cases, local and imported. This moment tends to be close to the moment when local cases overtakes
imported cases. Figure 5b shows the same data as in Figure 5a, but on a log scale, to better illustrate this point. This empirical
analysis validates the hypothesis that the deceleration of growth parameter can be used to estimate this local crossover time, even
if the available data set does not distinguish between local and imported cases. For the countries that did not reliably report
imported cases, such as Belize, Haiti, and Martinique, we can still estimate the crossover time based on this analysis.

It can be observed in Figure 5b that some countries actually had multiple, separate epidemic events, in which the number
of local cases jumped sharply. Plotting the deceleration of growth parameter over time, as shown in Figure 5c, is an e�ective way
to record these events. For example, this �gure shows that the United States had one prolonged epidemic event, which began
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(a) Scale-free (n=5000)

(b) Small-world (n=5000)

(c) Delaunay Triangulation (n=5000)

Figure 4: Metapopulation SIR simulation results for a scale-free, small-world, and Delaunay triangulation model with 5000
nodes. For each model, the left �gure shows the cumulative incidence curve of the epidemic outbreak in randomly selected
nodes. The incidence curve is decomposed into local and imported cases. The red ‘X’ signi�es the local establishment time, the
moment in time at which the total incidence curve becomes super-linear. The right �gure compares for all 5000 nodes the local
establishment time and the local crossover time, the moment in time at which the local incidence curve overtakes the imported
incidence curve.
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in Week 24 and ended in Week 50. However, Aruba had two clearly identi�ed epidemic events, each lasting 12 and 10 weeks,
respectively. Some countries, such as Panama, had three or more such epidemic events, but there is a possibility that this is just
an artifact of reporting bias.

The circumstances that results in multiple epidemic events are di�cult to determine and dependent on the speci�c details
of each country. However, there is a clear link between international connectivity and the local establishment time within each
country. As a proxy for connectivity, we use the each country’s total number of international visitors throughout 2014 divided
by their resident population. Figure 6 shows an inverse relationship between each country’s connectivity and its local establish-
ment time. Countries that have more international visitors than their own populations tends to have short establishment times,
typically between 1 to 4 weeks, likely because the disease is introduced through multiple individuals at the same time. There is
much more variance among countries with lower rates of tourism, with local establishment times ranging from 1 to 15 weeks,
with an average of 8.7 weeks.

4 Discussion
We discuss several types of analysis into an overlooked but critically important aspect of an epidemic outbreak: the span of
time between which the �rst infected individual enters a metapopulation and when local infection cases begin to dominate the
dynamics of the epidemic curve. If we assume for now that the environmental and socioeconomic properties are consistent
across the population, the dynamics of this initial infection phase are heavily dependent on the structure of the network. As
a consequence, certain nodes can be identi�ed as having a high risk factor for epidemics based on their network connectivity
relative to their neighbors.

The analytical model presented in Section 3.1, although simplistic, is useful for demonstrating a few important properties
of the initial infection phase within a subpopulation. First, the noisy regime is roughly a superposition of six exponential curves,
of which two represent local infection cases, two represent the importation of infected individuals from neighboring nodes, and
two represent the exportation of infected individuals into neighboring nodes. The only term to have a positive exponent is the
local infection Ī (0)e(β−µ)t term, and therefore given su�cient time, this term will eventually dominate the epidemic curve as
long as the assumption Γ = SI

N ∼ I holds. However, the travel infection terms have the coe�cient Ī (0)
β−µ , which for typical values

of β and µ will be orders of magnitude larger than Ī (0). Therefore, for a short period of time we would expect the travel terms
to dominate the curve.

The value of the
(

kθ
〈k〉θ

∑
j

1
kj − 1

)
term, which we call the exchange term and is constant in time for any speci�c node, is the

main factor in determining the precise dynamics of local and travel infection cases in the very early outbreak. In the idealized
limit that all nodes in the network have the same degree of connectivity (for example, a complete graph), the exchange term
vanishes, there is always an equal exchange of infected individuals between adjacent nodes, and only the local transmission terms
matter. If the exchange term for a particular node happens to be an order of magnitude smaller than β − µ, then the result is
e�ectively the same, and the estimated local establishment time from Equation (18) holds.

Outside of this limit, the structure of the network a�ects the shape of the epidemic curve beyond what the analytical model
can predict. Examples of this are shown in Figure 4, which demonstrates how the degree distribution of the network can dra-
matically a�ect the distribution of local establishment times. In general, networks with more equitable degree distributions,
such as small-world and triangulation models, tend to also have more equitable distributions in local establishment time. It is
also true that nodes with higher degree of connectivity tend to have shorter local establishment times but longer local crossover
times. In other words, the total epidemic curve becomes super-linear faster than the local infection cases overtakes the imported
cases. The opposite tends to be true for nodes with lower than average connectivity, in that the local establishment time is longer
than the local crossover time, but this time di�erence is most stark in the scale-free model. In general, the local establishment
time tends to be more homogeneous across the network than the local crossover time.

A fraction of nodes in the small-world model have an unusual dynamic in which the epidemic curve is triggered by a large
“bump” in travel cases. Nodes with this quality tend to have a negative exchange term, but there is no apparent correlation
between the exchange term and the probability of having this bump. They occur in nodes that are adjacent to several nodes in
advanced states of epidemic, and they are triggered by a sudden in�ux of a large number of infected individuals. These bumps
cause the local establishment time to be about 10% longer, as the imported incidence curve has an outsized e�ect on the dynamics
of the epidemic within that node.

The numerical simulations discussed in Section 3.2 demonstrate the predictive and diagnostic utility of the local establish-
ment time. A major advantage of the local establishment time as a metric of infection speed, besides the unnecessity of decom-
posed local and imported case data, is its remarkable stability across a network. In the scale-free network shown in Figure 4,
which follows a P (k) ∼ k−3 degree distribution, the standard deviation in local establishment time is about 12.2 units, whereas
the standard deviation in local crossover time is about 31.0 units. For individual nodes, the local establishment time may under-
predict an epidemic for nodes with connectivity less than half the mean of their neighbors, which would typically pertain to
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Figure 5: Analysis of chikungunya infection cases in the Western hemisphere. (a) The number of local and imported cases by
week. The red ‘X’ indicates the establishment time of local transmission, as computed by the deceleration of growth parameter.
(b) The same data as in (a) but on a log scale, to illustrate the early outbreak dynamics. (c) The evolution of the deceleration of
growth parameter over time.
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Figure 6: Relationship between tourism and the time to local establishment. The x-axis shows the total number of interna-
tional visitors in 2014 divided by the resident population of each country. The y-axis is the time di�erence between the �rst case
and the onset of local transmission in each country. The regression line is a log curve.

settlements on the rural outskirts of a population. In the small-world and triangulation models, which have more degree equi-
table distributions, the standard deviation in local establishment time is almost negligible. Therefore, the local establishment
time is a useful diagnostic tool for predicting the rate at which an epidemic can establish itself across an entire metapopulation.
This average local establishment time for an entire network is closely correlated to its average connectivity and clustering among
its nodes, and would be straightforward to compute in practice.

We tested other epidemic models, such as the Susceptible-Exposed-Infected-Recovered (SEIR) model, to con�rm that the
results of this paper can be applied more generally to the �eld of epidemiology. The estimates of local establishment time in
an SEIR model, for the scale-free, small-world, and triangulation networks, are qualitatively similar to the results shown in Fig-
ure 4, but with greater uncertainty due to the additional transition time between the exposed and infected states. The analytical
model and the numerical simulations both treat the incidence curve as a continuous function and assume the human behavior
is constant over time, both of which clearly do not apply to real-world epidemic scenarios. It is therefore not straightforward
to make the same broad judgments about the empirical example in Section 3.3. However, it can still be inferred that countries
with large quantities of human mobility, relative to their population, have shorter local establishment times. In future epidemic
scenarios, the local establishment time within a given country can be estimated fairly reliably based on the properties of the dis-
ease (transmission and recovery rates). With additional data, it may also be possible to predict how travel advisories that reduce
tourism would in turn increase the local establishment time.

4.1 Model Limitations

There are numerous ways in which the models described in this article can be expanded upon. This article does not consider the
in�uence of environmental and socioeconomic factors on disease vector habitat suitability (Caminade et al., 2017). We propose
the hypothesis that certain subpopulations can be high risks for epidemic outbreaks based on some combination of its network
structure, its habitat suitability, and its capacity to respond to infection cases. Fortunately, simulating these varying factors is
straightforward within the context of a metapopulation SIR model. One just needs to vary the quantities of β and µ across
the network, in response to empirical factors such as temperature, elevation, population density, and access to medical services.
Along similar lines, we can test the e�ects of government enforced travel restrictions on the local establishment time by lowering
the quantity of the di�usion rate p accordingly.

In addition, this article only discusses the e�ects of the external network structure on the development of an epidemic
within a node. This model assumes that human interaction within a subpopulation is homogeneous, that there is an equal
probability per unit time that any random pair of humans will interact with each other. A more advanced model should consider
heterogeneous distributions of population within each node. Possible solutions include modeling individual nodes as spatial
lattices or nested networks. Population nodes can be quanti�ed based on their external connectivity, clustering coe�cient, and
centrality as members of the larger population network, as well as their internal degree distribution, average clustering coe�cient,
and average centrality of their subnetwork structure (Chowell et al., 2017).
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5 Conclusion
This article o�ers illumination to a poorly understood process that underlies epidemic outbreaks within a given population,
and it is intended as a foundation into future research. Further analysis will discuss the e�ects on the local establishment time of
heterogeneous population distributions, human behavior, and diseases whose parameters are spatially and temporally varying.
It is also necessary to further explore the practical application of this analysis on predicting and mitigating future epidemic
scenarios.

Our eventual goal is to develop an epidemic model in which the node, rather than the individual, is the unit of computation.
This would allow for the extremely rapid and streamlined analysis of epidemic outbreaks on human population networks and
inform the study of how the structure of these networks in�uences the spread of the epidemic. Understanding the time duration
between the di�erent stages of an epidemic within a subpopulation is an integral component of this analysis.
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