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A Mathematical model of Malaria transmission dynamics
with general incidence function and maturation delay in a
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Bakary Traoré, Ousmane Koutou, Boureima Sangaré

UFR/ST, Department of Mathematics, University Nazi BONI, Burkina Faso

ABSTRACT
In this paper, we investigate a mathematical model of malaria transmission dynam-
ics with maturation delay of a vector population in a periodic environment. The
incidence rate between vector and human hosts is modeled by a general nonlinear
incidence function which satisfies a set of conditions. Thus, the model is formulated
as a system of retarded functional differential equations. Furthermore, through dy-
namical systems theory, we rigorously analyze the global behavior of the model.
Therefore, we prove that the basic reproduction number of the model denoted by
R0 is the threshold between the uniform persistence and the extinction of malaria
virus transmission. More precisely, we show that if R0 is less than unity, then the
disease-free periodic solution is globally asymptotically stable. Otherwise, the sys-
tem exhibits at least one positive periodic solution ifR0 is greater than unity. Finally,
we perform some numerical simulations to illustrate our mathematical results and
to analyze the impact of the delay on the disease transmission.
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1 Introduction
The spread of infectious diseases has always been a big concern and poses a threat to public health, as well as to the economic and
social developments of the human society. Thus, its prevention and control become extremely important (Agusto, 2014; Ander-
son and May, 1982; Burnett and White, 1974). Quantitative studies of disease transmission mechanisms provide a foundation
for such prevention and control, and the fundamental aim of epidemic dynamics is to investigate the transmission dynamics of
infectious diseases. Hence, mathematical models based on the progressions of diseases are formulated, to analyze the origins of
the diseases, the factors involved in their transmissions and to predict their prevalence and their patterns. Further, qualitative
and quantitative studies, and sensitivity analysis of model parameters can help us make more realistic simulations and reliable
transmission predictions which may not be feasible by experiments or �eld studies (Ma and Li, 2009). Thus, epidemiological
models have been recognized as valuable tools in analyzing the spread and the control of infectious diseases. The standard tech-
nique for developing mathematical descriptions of diseases is to model the system as a set of ordinary di�erential equations (Bai
and Zhou, 2012; Koutou et al., 2018a; Traoré et al., 2020). The earliest ordinary di�erential equations epidemic models were
proposed by Kermack and McKendrick (1927). This is an immensely powerful approach which has led to many insights into
the factors that a�ect disease prevalence and control.

In the study of epidemiological models, incidence rate plays an important role (Alexander and Moghadas, 2014; Roop-O
et al., 2015). The incidence rate is the infection rate of susceptible individuals through their contacts with infectious individuals.
The number of individuals contacted by an infective per unit of time is called a contact rate of the infection, denoted by µ(N ). It
depends on the population sizeN in a given environment (Burnett and White, 1974; Ma and Li, 2009). The function pµ(N ) de-
scribes the force of infection of the infectious individuals and p represents the probability of infection per contact. This function
usually depends on the toxicity of the virus or on the situation of the environment. Since diseases are transmitted to susceptible
individuals (S) by contact with infective (I), then the incidence of the disease is given by pµ(N )SI/N where pµ(N )S/N is the
infection rate and S/N is the fraction of susceptible in the population, (Anderson and May, 1982; Bai and Zhou, 2012). In
the literature, there exist di�erent types of incidence rate among which we quote: the bilinear incidence or simple mass action
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incidence, denoted by qpSI with µ(N ) = qN and the standard incidence, denoted by qpSI/N with µ(N ) = q (Korobeinikov,
2006). In 1982, Anderson and May showed that the standard incidence is more suitable than the bilinear form for diseases
transmitted in human populations. In 1978, Capasso and Serio used saturated incidence of the form βSI/(1 + κI). Further, in
1986 Liu et al. proposed nonlinear incidences of the form of βSIn/(1 + κIn). Some years later, the general form (βh(I)Sn/N )
of this incidence was introduced by certain authors. Due to the importance of the incidence rate in the mathematical modeling
of infectious diseases, its choice is very important in the qualitative description of the diseases transmission. Hence, to avoid
the use of a single incidence function, the use of a general incidence rate including a family of particular functions with similar
properties has become a topic of interest for several authors (Alexander and Moghadas, 2014; Posny and Wang, 2014; Roop-O
et al., 2015; Traoré et al., 2019; Traoré et al., 2020).

Malaria is a potentially deadly disease caused by protozoan parasites known as Plasmodium that infect and replicate within
human blood cells. It is the most prevalent infectious disease in the world. Malaria parasites spread between humans via the
bite of the infectious female adult Anopheles. There are �ve (previously four) Plasmodium species that have been reported to
cause signi�cant numbers of malaria infections in humans. Concerning the mathematical modeling for the spread of malaria
transmission, signi�cant breakthroughs have been made in recent years since the �rst model introduced by Ronald Ross in
1911 and Georges Macdonald in 1957. Since then, there has been a great deal of work about using mathematical models to
study malaria transmission (Agusto, 2014; Chitnis et al., 2008; Chiyaka et al., 2008; Traoré et al., 2018). Nowadays, two major
factors arouse scientist’s interest. The �rst one is the life cycle of Anopheles in the dynamics of malaria transmission (Ai et al.,
2011; Lutambi et al., 2013; Traoré et al., 2018) and the second one is the impact of climate on this life cycle (Lou and Zhao,
2010; Okuneye and Gumel, 2017; Wang and Zhao, 2018; Koutou et al., 2018b). Malaria is one of the diseases that exhibits
seasonal �uctuation. Indeed, environmental and climatic factors play an important role in the geographical distribution and
transmission of malaria. For example, in temperate climates and in tropical highlands, temperature restricts vector multiplication
and the development of the parasite in the mosquito, while in arid climates, precipitations restrict mosquito breeding (Okuneye
and Gumel, 2017; Traoré et al., 2017; Wang and Zhao, 2018; Traoré et al., 2020). Moreover, the population biology of the
Anopheles vectors is crucial to understanding many aspects of the disease, as well as assessing control strategies and projecting
future outcomes. Malaria models that do not incorporate the dynamics of the juvenile stages of the mosquito are known to give
results that do not generally match with observed epidemiology.

As we have mentioned above, the incidence function is considered to play a vital role in ensuring that the model can give
a reasonable qualitative description of the disease dynamics. Hence, we note that about malaria modeling, many models with
di�erent kinds of incidences have been proposed in order to analyze the dynamical properties of the disease. For instance, in one
of their investigations, Lou and Zhao (2010) used a standard incidence rate to formulate a seasonal mosquito stage structure
malaria model by including a delay in the immature mosquitoes maturation, and they proved that the introduction of the time
delay has signi�cant e�ect on the disease transmission. Further, using bilinear incidence, Wang et al. (2011) investigated a model
of malaria transmission in a periodic environment and they showed that the existence of chaos in the periodic model may cause
the disease to approach the uncontrollable state due to unpredictability. Olaniyi and Obabiyi (2013) introduced a new model
of malaria transmission by using a saturated incidence. Thus, the use of di�erent types of incidence function to model malaria
transmission attracts many authors. However, since many forms of incidence functions are used to model the transmission of
malaria, what type of incidence is more suitable and should be chosen when we investigate malaria transmission? That is a real
challenge because its choice depends on many factors such as toxicity of parasite, situation of the environment and so on (Ma
and Li, 2009; Hu and Sun, 2011). In view of these factors, it is very di�cult to estimate the incidence rate. To contribute to the
answer of the question, in this paper, we extend the work of Lou and Zhao (2010); Li et al. (2017) by using a general incidence
function that includes a family of particular functions with similar properties to describe interaction between human hosts and
vector in the periodic environment. The general incidence function used, contains all those existing in the literature of malaria
modeling including that used by Lou and Zhao. Through mathematical analysis, we derive the epidemic threshold parameter
R0, for predicting disease persistence or extinction in periodic environment. Further, by using Floquet theory (Tiana and Wang,
2015; Zhao, 2003; Traoré et al., 2020), we show that the global stability of the disease-free periodic equilibrium and the uniform
persistence of the disease are strongly linked to the basic reproduction number.

The rest of the paper is organized as follows. In Section 2, we formulate the mathematical model. In Section 3, �rstly, we
introduce some basic results. Then, we compute the basic reproduction number R0 of the model in the periodic environment
and we deduce the basic reproduction number R̂0 of the associated autonomous model. The focus of Section 4 is on global
behavior of our model. Numerical simulations are provided in Section 5 in order to illustrate our theoretical results. We conclude
in Section 6.
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2 Mathematical model formulation
Malaria parasites are transmitted to human hosts through the bites of infectious female Anopheles mosquitoes (Koutou et al.,
2018a,b; Traoré et al., 2020). Thus, in the model we consider two groups of populations: human population and mosquito
population. The human population is divided into four epidemiological categories representing the state variables: susceptible
humans denoted by Sh (t), exposed humans denoted by Eh (t), infectious humans denoted by Ih (t) and immune humans (im-
mune and asymptomatic, but slightly infectious) denoted by Rh (t). The mosquito population is divided into two sub-groups:
the juvenile mosquitoes and the adult mosquitoes. The adult mosquitoes are divided into three classes: susceptible mosquitoes
denoted by Sv (t), exposed mosquitoes denoted by Ev (t) and infectious mosquitoes denoted by Iv (t). The mosquito popula-
tion does not include an immune class as mosquitoes never recover from infection because their infective period ends with their
death due to their relatively short life-cycle. At any time, the total size of the human population and the mature mosquitoes
population are respectively given by:

Nh (t) = Sh (t) + Eh (t) + Ih (t) + Rh (t),
Nv (t) = Sv (t) + Ev (t) + Iv (t).

If an infectious mosquito bites a susceptible human, then the human progresses through the exposed, infectious and im-
mune classes before moving to the susceptible class if he loses his immunity. Similarly, when a susceptible mosquito bites an
infectious or immune human, it moves through the exposed and infectious classes. The immature mosquitoes are divided into
three classes: egg, larva and pupa. In each class we assume that we have the same development rate with periodic death rate
di (t), where di (t) is determined by the climate pro�le. The juvenile mosquitoes maturation rate at time t, produced by female
mosquitoes at time t − τ is given by

B
(
t − τ,Nv (t − τ)

)
η(t), with η(t) = exp

(
−
∫ t

t−τ
di (s)ds

)
,

where τ is the average maturation period, and B(t,Nv (t)) the egg reproduction function.
Indeed, in the biological literature, there exists three types of time ω-periodic reproduction functions:

(i) B1 (t,N ) =
p(t)N

q(t) + N n with p(t) > 0, q(t) > 0 and n > 0.

(ii) B2 (t,N ) = a(t) + i(t)N with a(t) ≥ 0 and i(t) > 0.

(iii) B3 (t,N ) = j(t)Ne−s(t)N with j(t) > 0 and s(t) > 0.

FunctionsB1 withn = 1 andB3 are used in �sheries and are known respectively as the Ricker function and the Beverton-Holt
function. In function B2, quantity a(t) represents a periodic immigration rate and i(t)N is a periodic birth term.

Moreover, in this general model, the infection rates per susceptible mosquito and per susceptible human are respectively
given by functions g

(
t, Ih (t),Rh (t)

)
and f

(
t, Iv (t)

)
. We assume throughout this paper that:

(H1) : all vector population measures refer to densities of female mosquitoes,

(H2) : the mosquitoes bite only humans,

(H3) : all the new recruit humans and vectors are susceptible.

From the above assumptions, we obtain the diagram seen in Figure 1 where,

• Λh is the constant recruitment rate for humans,
• dh is the natural death rate for humans,
• dp is the disease-induced death rate for humans,
• αh is the transfer rate of humans from exposed class to infectious class,
• rh is the recovery rate of humans,
• γ is the per capita rate of loss of immunity for humans,
• αv is the transfer rate of mosquitoes from exposed class to infectious class,
• τ is the maturation period of immature mosquitoes.
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Sh Eh Ih Rh

Sv Ev IvImmature

f (t, Iv) αh rh

g(t, Ih,Rh) αv

Λh

B
(
t − τ,Nv (t − τ)

)
η(t)

dh dh dh + dp dh

dv (t) dv (t) dv (t)

γ

Figure 1: Transfer diagram: The dashed arrows indicate the direction of the infection and the solid arrows represent the
transition from one class to another.

Furthermore, the number of individuals which survives from one class to the next (see Figure 1), is given by the following di�er-
ential equations: 

¤Sh (t) = Λh + γRh (t) − dhSh (t) − f
(
t, Iv (t)

)
Sh (t),

¤Eh (t) = f (t, Iv (t))Sh (t) − (dh + αh)Eh (t),

¤Ih (t) = αhEh (t) − (dh + dp + rh)Ih (t),

¤Rh (t) = rhIh (t) − (dh + γ)Rh (t),

¤Sv (t) = B
(
t − τ,Nv (t − τ)

)
η(t) − dv (t)Sv (t) − g

(
t, Ih (t),Rh (t)

)
Sv (t),

¤Ev (t) = g
(
t, Ih (t),Rh (t)

)
Sv (t) − (αv + dv (t))Ev (t),

¤Iv (t) = αvEv (t) − dv (t)Iv (t).

(1)

Moreover, at any time t, we have:

¤Nh (t) = Λh − dhNh (t) − dpIh (t), (2)
¤Nv (t) = B

(
t − τ,Nv (t − τ)

)
η(t) − dv (t)Nv (t). (3)

3 Preliminaries and threshold dynamics

3.1 Preliminaries
Let C be the Banach space of continuous functions ϕ : [−τ, 0] → R7

+ equipped with norm

ϕ

 = sup
ϑ∈[−τ,0]

|ϕ(ϑ) |,

and ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7) the initial function belongs to the space C . Then, system (1) can be written as follows:

¤x(t) = K (t, x), (4)

with
x(ϑ) =

(
Sh (ϑ),Eh (ϑ), Ih (ϑ),Rh (ϑ), Sv (ϑ),Ev (ϑ), Iv (ϑ)

)
∈ C .
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Theorem 3.1 (Lou and Zhao, 2009). Equation (3) admits a positive ω-periodic solution N ∗v (t) which is globally asymptotically
stable in C \ {0}.

In the particular case where B(t − τ,Nv (t − τ)) = k > 0, di (t) = di > 0 and dv (t) = dv > 0, then equation (3) reduces
to an autonomous ordinary di�erential equation. The dynamics of the mosquito population is then governed by the following
equation:

¤Nv (t) = ke−τdi − dvNv (t). (5)

It is obvious that equation (5) admits a positive solution

N ∗v (t) =
ke−τdi
dv

+
(
Nv (0) +

ke−τdi
dv

)
e−dvt . (6)

Moreover, it is clear that N ∗v (t) −→ N ∗v =
ke−τdi
dv

as t → +∞.

In order to simplify the notations, we introduce the following new functions:

f vi =
mf
mIv

, f hi =
mf
mIh

, f hr =
mf
mRh

, f vii =
m2f
mI2

v
, gvi =

mg
mIv

,

ghi =
mg
mIh

, ghr =
mg
mRh

, ghrr =
m2g
mR2

h
, ghri =

m2g
mRhmIh

, ghir =
m2g

mIhmRh
.

Furthermore, we assume that functions f and g satisfy the following assumptions:

(H4) : f and g are assumed to be di�erentiable and periodic in time with a common positive period ω. That means that,

g
(
t + ω, Ih (t),Rh (t)

)
= g

(
t, Ih (t),Rh (t)

)
and f

(
t + ω, Iv (t)

)
= f

(
t, Iv (t)

)
.

(H5) : f
(
t, Iv

)
≥ 0 and g

(
t, Ih,Rh

)
≥ 0.

(H6) : f
(
t, 0

)
= 0 = g

(
t, 0, 0

)
.

(H7) : f vi (t, Iv) ≥ 0, ghi (t, Ih,Rh) ≥ 0 and ghr (t, Ih,Rh) ≥ 0.

(H8) : f (t, Iv) and g(t, Ih,Rh) are both concave for any t ≥ 0; namely(
ghii ghir
ghri ghrr

)
is negative semide�nite everywhere and f vii is negative.

(H9) : f hi (t, 0) = 0 = f hr (t, 0) and gvi (t, 0, 0) = 0.

(H10) : There exists a positive number N̂v such as

B
(
t − τ,Nv

)
η(t) − dv (t)Nv < 0,∀Nv ≥ N̂v.

The conditions in assumption (H5) state that the infection occurs when there is contact between infectious mosquitoes and
susceptible humans and also between susceptible mosquitoes and infectious humans. Assumption (H7) states that the rate
of new infection increases with both the infected humans population size and the infected mosquitoes population size; and
assumption (H9) ensures that there is no direct transmission of malaria in both populations. Condition (H8) is a common
assumption in epidemic model, based on saturation e�ect.

Remark 3.1.

• The standard incidence function is of the form

f (t, Iv)Sh = β1 (t)
Iv
Nh

Sh and g(t, Ih,Rh)Sv = β2 (t)
Ih
Nh

Sv + β3 (t)
Rh

Nh
Sv (7)

and has been used by Lou and Zhao (2010) and Roop-O et al. (2015).
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• The saturation incidence function is of the form

f (t, Iv)Sh = β1 (t)
Iv

1 + µvIv
Sh and g(t, Ih,Rh)Sv = β2 (t)

Ih
1 + µhIh

Sv + β3 (t)
Rh

1 + µhIh
Sv (8)

has been used by Roop-O et al. (2015) and Olaniyi and Obabiyi (2013),

where βi , i = 1, 2, 3 represent di�erent rates of contact that lead to an infection. µh and µv determine the level at which the force
of infection saturates.

Let us consider the following linear ordinary di�erential system

¤Q(t) = B(t)Q(t), (9)

whereB(t) is a continuous, cooperative, irreducible andω-periodicn×nmatrix function andΦB (t) is the fundamental solution
matrix of (9). Let ρ

(
ΦB (ω)

)
be the spectral radius of the matrix ΦB (ω). By the Perron-Frobenius theorem (see Smith, 1995,

Theorem A.3), ρ
(
ΦB (ω)

)
is the principal eigenvalue ofΦB (ω)which is associated to a positive eigenvector. Hence, the following

result is useful for our subsequent comparison arguments.

Lemma 3.1 (Bai and Zhou, 2012). Let r =
1
ω

ln ρ(ΦF−V (.) (ω)), then there exists a positive ω-periodic function v(t) such that
ertv(t) is a solution of equation (9).

3.2 Threshold dynamics
Now, we introduce the basic reproduction number for model (1) according to the theory developed in 2008 by Wang and Zhao,
which is a generalization of the work in (Van den Driessche and Watmough, 2002) to the periodic case. Assumption (H6) and
Theorem 3.1, yield that system (1) admits a unique disease-free periodic equilibrium

Et =
(
N ∗h , 0, 0, 0,N ∗v (t), 0, 0

)
,

with
N ∗h =

Λh

dh
= S∗h and N ∗v (t) = S∗v (t).

Hence, linearizing system (1) at the disease-free periodic state Et , we obtain the following system:

¤Eh (t) = S∗hIv (t)f
v
i (t, 0) − (dh + αh)Eh (t),

¤Ih (t) = αhEh (t) − (dh + dp + rh)Ih (t),

¤Rh (t) = rhIh (t) − (dh + γ)Rh (t),

¤Ev (t) = S∗v (t)ghi (t, 0, 0)Iv (t) + S∗v (t)ghr (t, 0, 0)Rh (t) − (αv + dv (t))Ev (t),

¤Iv (t) = αvEv (t) − dv (t)Iv (t).

This system can be written as follows:
¤z(t) =

(
F (t) − V (t)

)
z(t), (10)

where
z(t) =

(
Eh (t), Ih (t),Rh (t),Ev (t), Iv (t)

)T ,

F (t) =

©­­­­­«
0 0 0 0 S∗hf

v
i (t, 0)

0 0 0 0 0
0 0 0 0 0
0 S∗v (t)ghi (t, 0, 0) S∗v (t)ghr (t, 0, 0) 0 0
0 0 0 0 0

ª®®®®®¬
,

and

V (t) =

©­­­­­«
dh + αh 0 0 0 0
−αh dh + dp + rh 0 0 0

0 −rh dh + γ 0 0
0 0 0 αv + dv (t) 0
0 0 0 −αv dv (t)

ª®®®®®¬
.
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Let Y (t, s), t ≥ s be the matrix solution of the linear ω-periodic system
¤Y (t, s) = −V (t)Y (t, s), ∀t ≥ s,
Y (s, s) = I5,

(11)

where I5 is the 5 × 5 identity matrix and Cω is the ordered Banach space of all ω-periodic functions from R to R5 which is
equipped with the maximum norm ‖·‖. Suppose φ(s) ∈ Cω is the initial distribution of infectious individuals in this periodic
environment. Then F (s)φ(s) is the rate of new infections produced by the infected individuals who were introduced at time s,
and Y (t, s)F (s)φ(s) represents the distribution of those infected individuals who were newly infected at time s and remain in
the infected compartments at time t for t ≥ s. Hence,

ψ (t) =
∫ ∞

0
Y (t, t − σ)F (t − σ)φ(t − σ)dσ , σ ∈ [0, +∞),

is the distribution of accumulative new infections at time t produced by all those infected individuals φ(s) introduced at the
previous time (Burnett and White, 1974; Capasso and Serio, 1978; Chitnis et al., 2008; Koutou et al., 2018a).

Thus, we de�ne the next infection operator L : Cω −→ Cω by

(L φ) (t) =
∫ ∞

0
Y (t, t − σ)F (t − σ)φ(t − σ)dσ , ∀ t ∈ R, φ ∈ Cω.

So, the basic reproduction number is R0 = ρ(L ), the spectral radius of L .
In order to calculate R0, we consider the following linear ω-periodic system:

¤w(t) =
[

1
λ
F (t) − V (t)

]
w(t), ∀ t ∈ R+, λ ∈ (0,∞). (12)

Let W (t, s, λ), t ≥ s, s ∈ R, be the evolution operator of system (12) on R5. Clearly W (t, 0, 1) = ΦF−V (t), ∀ t ≥ 0. The
following result will be used in our numerical calculation of the basic reproduction number.
Lemma 3.2 (Wang and Zhao, 2008).

(i) If ρ(W (ω, 0, λ)) = 1 has a positive solution λ0, then λ0 is an eigenvalue of L , and hence R0 > 0.

(ii) If R0 > 0, then λ = R0 is the unique solution of ρ(W (ω, 0, λ)) = 1.

(iii) R0 = 0 if and only if ρ(W (ω, 0, λ)) < 1, for all λ > 0.
Remark 3.2. In the case where model (1) is reduced to an autonomous system, the basic reproduction number can be computed
as follows:

R̂ 2
0 =

αhαvS∗h
Q

(
rhghr (0, 0) + (dh + γ)ghi (0, 0)

)
S∗v f

v
i (0). (13)

with
Q = dv (αv + dv) (dh + γ) (dh + dp + rh) (dh + αh).

Let S∗v =
ke−τdi
dv

.

• Using the standard incidence function given in (7), we obtain

R̂ 2
0,1 =

αhαv
Q

(
rhβ3

S∗h
+
(dh + γ)β2

S∗h

)
β1ke−τdi (14)

with
Q = d2

v (αv + dv) (dh + γ) (dh + dp + rh) (dh + αh).

• Using the saturation incidence function given in (8), we obtain

R̂ 2
0,2 =

αhαvS∗h
Q

(
rhβ3 + (dh + γ)β2

)
β1ke−τdi . (15)

with
Q = d2

v (αv + dv) (dh + γ) (dh + dp + rh) (dh + αh).

From the above results, one can see that setting all the parameters of the model (1) it is clear that R̂0,1 is always less than R̂0,2.
Hence, the choice of incidence function is crucial when determining the transmission dynamics of malaria. Moreover, we note
that the larger τ is, the smaller the basic reproduction number becomes (Chiyaka et al., 2008; Tian and Song, 2017). Besides, it
is obvious that incidence functions de�ned in (7) and (8) satisfy assumptions (H4)−(H9).
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4 Global behavior of the model

4.1 Positivity and boundedness of solutions
Lemma 4.1 (Ouedraogo et al., 2018, 2019). Let (H10) hold. For any ϕ ∈ C, system (1) has a unique nonnegative solution.
Moreover, all the solutions are ultimately and uniformly bounded.

Proof. For any ϕ ∈ C , the function

K (t, ϕ) =

©­­­­­­­­­­­­­­­«

Λh + γϕ4 (0) − dhϕ1 (0) − f
(
t, ϕ7 (0)

)
ϕ1 (0)

f (t, ϕ7 (0))ϕ1 (0) − (dh + αh)ϕ2 (0)
αhϕ2 (0) − (dh + dp + rh)ϕ3 (0)

rhϕ3 (0) − (dh + γ)ϕ4 (0)

B
(
t − τ,

7∑
i=5

ϕi (−τ)
)
η(t) − dv (t)ϕ5 (0) − g

(
t, ϕ2 (0), ϕ4 (0)

)
ϕ5 (0)

g
(
t, ϕ2 (0), ϕ4 (0)

)
ϕ5 (0) − (αv + dv (t))ϕ6 (0)

αvϕ6 (0) − dv (t)ϕ7 (0),

ª®®®®®®®®®®®®®®®¬
is continuous and Lipschitzian in ϕ in each compact set in R × C . Hence, by fundamental theory of functional di�erential
equations (Hale, 1977; Ouedraogo et al., 2018, 2019; Koutou et al., 2018a,b), system (1) admits a unique solution. Therefore,
note that if ϕ is nonnegative and ϕi (0) = 0, for i = 1, 2, . . . , 7 thenK (t, ϕ) is nonnegative. So, thanks to Remark 5.2.1 in (Smith,
1995), the set C is positively invariant.

From equations (2) and (3), we have:

¤Nh (t) ≤ Λh − dhNh (t),
¤Nv (t) ≤ B

(
t − τ,Nv (t − τ)

)
η(t) − dv (t)Nv (t).

Thus, using the standard comparison theorem, it yields that

lim sup
t→∞

Nh (t) ≤ lim sup
t→∞

[
Λh

dh
+

(
Nh (0) −

Λh

dh

)
e−dht

]
= N ∗h

and
lim sup
t→∞

(
Nv (t) −N ∗v (t)

)
≤ 0.

It yields that, all the solutions are ultimately bounded.
Moreover, if Nh (t) > N ∗h and Nv (t) > N̂v, then ¤Nh (t) < 0 and ¤Nv (t) < 0. It then follows that all the solutions are

uniformly bounded and that completes the proof. �

4.2 Extinction of disease
In this section, we investigate the global stability of the disease-free periodic equilibrium, Et which also provides a condition for
the extinction of the disease. We give the following results, which will be used in the proof of our main results.

Lemma 4.2 (Wang and Zhao, 2008). The following statements are valid:

(i) R0 = 1 if and only if ρ(ΦF−V (ω)) = 1.

(ii) R0 < 1 if and only if ρ(ΦF−V (ω)) < 1.

(iii) R0 > 1 if and only if ρ(ΦF−V (ω)) > 1.

Hence, the disease-free periodic equilibrium Et is locally asymptotically stable if R0 < 1 and unstable if R0 > 1, whereΦF−V (t)
is the monodromy matrix of linear ω-periodic system (12).

Theorem 4.1. If R0 < 1 and dp = 0, then the disease-free periodic equilibrium, Et is globally asymptotically stable.
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Proof. If dp = 0, then we have,

¤Nh (t) = Λh − dhNh (t),
¤Nv (t) = B

(
t − τ,Nv (t − τ)

)
η(t) − dv (t)Nv (t).

Thus, there exists a period ω1 (ε) such that ∀t ≥ ω1 (ε),

Nh (t) ≤ S∗h + ε and Nv (t) ≤ S∗v (t) + ε, ∀ ε > 0.

Since f and g are di�erentiable, then, from assumptions (H6) and (H8), and using the Taylor-Young formula, it yields that

Sh (t)f
(
t, Iv (t)

)
≤ (S∗h + ε)Iv (t)f vi (t, 0)

Sv (t)g
(
t, Ih (t),Rh (t)

)
≤ (S∗v (t) + ε)

(
Ih (t)ghi (t, 0, 0) + Rh (t)ghr (t, 0, 0)

)
.

Thus, from model (1) we have

¤Eh (t) ≤ (S∗h + ε)f vi (t, 0)Iv (t) − (dh + αh)Eh (t),
¤Ev (t) ≤ (S∗v (t) + ε)ghi (t, 0, 0)Iv (t) + (S∗v (t) + ε)ghr (t, 0, 0)Rh (t) − (αv + dv (t))Ev (t).

We obtain the following system: ©­­­­­«
¤Eh (t)
¤Ih (t)
¤Rh (t)
¤Ev (t)
¤Iv (t)

ª®®®®®¬
≤

(
Fε (t) − V (t)

) ©­­­­­«
Eh (t)
Ih (t)
Rh (t)
Ev (t)
Iv (t)

ª®®®®®¬
, (16)

with

Fε (t) =

©­­­­­«
0 0 0 0 (S∗h + ε)f vi (t, 0)
0 0 0 0 0
0 0 0 0 0
0 (S∗v (t) + ε)ghi (t, 0, 0) (S∗v (t) + ε)ghr (t, 0, 0) 0 0
0 0 0 0 0

ª®®®®®¬
.

Now, let us consider the following auxiliary system:

¤̃z(t) =
(
Fε (t) − V (t)

)
z̃(t), (17)

where
z̃(t) =

(
Ẽh (t), Ĩh (t), R̃h (t), Ẽv (t), Ĩv (t)

)T .

If R0 < 1, then, from Lemma 4.2, ρ(ΦF−V (ω)) < 1. Moreover, by the continuity of the spectral radius, we have

lim
ε→0+

ρ
(
ΦFε−V (ω)

)
= ρ

(
ΦF−V (ω)

)
< 1.

Thus, there exists ε∗ > 0 such that ρ
(
ΦFε−V (ω)

)
< 1, ∀ε ∈ [0, ε∗]. Further, Lemma 3.1 implies that there exists a positive

ω-periodic function v(t) such that z̃(t) = ertv(t) is a solution of (17), with r = 1
ω ln ρ(ΦFε−V (ω)). Since ρ

(
ΦFε−V (ω)

)
< 1, then,

r < 0 and z̃(t) → 0 as t →∞. Then, by using the comparison theorem (Lakshmikantham et al., 1989), it yields that

lim
t→∞

(
Eh (t), Ih (t),Rh (t),Ev (t), Iv (t)

)
= (0, 0, 0, 0, 0).

Hence, by the �rst equation of system (1) we get lim
t→∞

Sh (t) = S∗h .
Moreover, we have

lim
t→∞
(Sv (t) −N ∗v (t)) = lim

t→∞
(Nv (t) − Ev (t) − Iv (t) −N ∗v (t)) = 0.

It then follows that Et is globally attractive if R0 < 1. This completes the proof. �
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4.3 Disease persistence
Here, we study the behavior of model (1) when the basic reproduction number, R0 is greater than unity.

Let us consider the following sets:

X ≔ C
(
[−τ, 0],R7

+
)
,

X0 ≔
{
ϕ ∈ X : ϕi (0) > 0, ∀i ∈ {2, 3, 4, 6, 7}

}
,

mX0 ≔ X \ X0.

Let u(t, ϕ) be the unique solution of (1) such that u(0, ϕ) = ϕ the periodic semi�ow generated by periodic system (1) and
P : X → X the Poincaré map associated with system (1), namely:

P (ϕ) = Φ(ω)ϕ = u(ω, ϕ), ∀ ϕ ∈ X .
Pn (ϕ) = Φ(nω)ϕ = u(nω, ϕ), ∀ n ≥ 0.

We see that bothX andX0 are positively invariant with respect to model (1), and mX0 is a relatively closed set inX . Moreover,
P is point dissipative from Lemma 4.1 andPn0 is compact whenevern0ω > τ. Thus, following Theorem 2.4 in (Magal and Zhao,
2006), P admits a global attractor in X .

Lemma 4.3. If R0 > 1, there exists ξ > 0 such that when


ϕ − E

 ≤ ξ , for any ϕ ∈ X0, one has lim sup

k→∞
d
(
Pk (ϕ),E

)
≥ ξ where

E =
(
N ∗h , 0, 0, 0,N ∗v (ϑ), 0, 0

)
for all ϑ ∈ [−τ, 0].

Proof. Suppose by contradiction that

lim sup
k→∞

d
(
Pk (ϕ),E

)
< ξ for some ϕ ∈ X0. (18)

Then, there exists an integer k1 ≥ 1 such that for all k ≥ k1, d
(
Pk (ϕ),E

)
< ξ . By the continuity of solutions with respect to

initial values, if


ϕ − E

 ≤ ξ , then


u(t,Pk (ϕ)) − u(t,E)


 < ε1, for all t ∈ [0,ω] and ε1 > 0. (19)

Let t = kω + t′, where t′ ∈ [0,ω] and k = [ tω ]. [
t
ω ] is the greatest integer less than or equal to t

ω . Hence, we have

u(t, ϕ) − u(t,E)

 =


u(t′ + kω, ϕ

)
− u

(
t′ + kω,E

)

 =



u(t′,Pk (ϕ)) − u(t′,E)


 < ε.

It then follows that

Sh (t) ≥ S∗h − ε1, Sv (t) ≥ S∗v (t) − ε1, 0 ≤ Iv (t) ≤ ε1, 0 ≤ Ih (t) ≤ ε1, 0 ≤ Rh (t) ≤ ε1.

Moreover, assuming that f and g are concave, then we have

Sh (t)f
(
t, Iv (t)

)
≥

(
S∗h − ε1

) (
f (t, 0) + Iv (t)f vi (t, 0) +

1
2
ε1Iv (t)f vii (t, 0)

)
Sv (t)g

(
t, Ih (t),Rh (t)

)
≥

(
S∗v (t) − ε1

) (
g(t, 0, 0) + Ih (t)ghi (t, 0, 0) + Rh (t)ghr (t, 0, 0)

+
1
2
ε1Ih (t)ghii (t, 0, 0) − ε1Ih (t)

��ghir (t, 0, 0)
�� +

1
2
ε1Rh (t)ghrr (t, 0, 0)

)
.

Further, we obtain the following system:

©­­­­­«
¤Eh (t)
¤Ih (t)
¤Rh (t)
¤Ev (t)
¤Iv (t)

ª®®®®®¬
≥

(
Fε1 (t) − V (t)

) ©­­­­­«
Eh (t)
Ih (t)
Rh (t)
Ev (t)
Iv (t)

ª®®®®®¬
, (20)
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with

Fε1 (t) =

©­­­­­«
0 0 0 0 (S∗h − ε1)G̃1 (t, 0)
0 0 0 0 0
0 0 0 0 0
0 (S∗v (t) − ε1)G̃2 (t, 0, 0) (S∗v (t) − ε1)G̃3 (t, 0, 0) 0 0
0 0 0 0 0

ª®®®®®¬
,

where

G̃1 (t, 0) = f vi (t, 0) + 1
2 ε1f vii (t, 0),

G̃2 (t, 0, 0) = ghi (t, 0, 0) + 1
2 ε1ghii (t, 0, 0) − ε1

��ghir (t, 0, 0)
��,

G̃3 (t, 0, 0) = ghr (t, 0, 0) + 1
2 ε1ghrr (t, 0, 0).

Let us consider again the following auxiliary system:

¤̄z(t) =
(
Fε1 (t) − V (t)

)
z̄(t), (21)

where
z̄(t) =

(
Ēh (t), Īh (t), R̄h (t), Ēv (t), Īv (t)

)T .

If R0 > 1, once again, Lemma 4.2 implies that ρ(ΦF−V (ω)) > 1. By the continuity of the spectral radius, we have

lim
ε1→0+

ρ
(
ΦFε1−V (ω)

)
= ρ

(
ΦF−V (ω)

)
> 1.

Thus, there exists ε∗1 > 0 such that ρ
(
ΦFε1−V (ω)

)
> 1, ∀ε1 ∈ [0, ε∗1 ]. Hence, from Lemma 3.1, there exists a positive ω-periodic

function v(t) such that z̄(t) = ertv(t) is a solution of (21), with r =
1
ω

ln ρ(ΦFε1−V (ω)). Since ρ(ΦFε1−V (ω)) > 1, then r > 0
and lim

t→∞
z̄(t) = ∞. It then follows from the comparison principle that

lim
t→∞

�� (Eh (t), Ih (t),Rh (t),Ev (t), Iv (t)
) �� = ∞

which is in contradiction with (18). �

Theorem 4.2. If R0 > 1, there exists δ > 0 such that any solution of system (1) with initial condition, ϕ ∈ X0 satisfies

lim inf
t→∞

Sh (t) ≥ δ, lim inf
t→∞

Eh (t) ≥ δ, lim inf
t→∞

Ih (t) ≥ δ, lim inf
t→∞

Rh (t) ≥ δ,

lim inf
t→∞

Sv (t) ≥ δ, lim inf
t→∞

Ev (t) ≥ δ, lim inf
t→∞

Iv (t) ≥ δ,

and system (1) admits at least one positive periodic solution.

Proof. Let us de�ne the set
Mm ≔

{
ϕ ∈ mX0 : Pn (ϕ) ∈ mX0,∀n ≥ 0

}
.

We claim that
Mm =

{
ϕ ∈ X : ϕi (0) = 0, ∀i ∈ {2, 3, 4, 6, 7}

}
. (22)

If (
ϕ1 (0), ϕ2 (0), ϕ3 (0), ϕ4 (0), ϕ5 (0), ϕ6 (0), ϕ7 (0)

)
=

(
ϕ1 (0), 0, 0, 0, ϕ5 (0), 0, 0

)
with ϕ1 (0) > 0 and ϕ5 (0) > 0 then,

(Sh (t),Eh (t), Ih (t),Rh (t), Sv (t),Ev (t), Iv (t)) ≡ (Sh (t), 0, 0, 0, Sv (t), 0, 0)

with Sh (t) > 0 and Sv (t) > 0. So, Mm ⊇
{
ϕ ∈ X : ϕi (0) = 0, ∀i ∈ {2, 3, 4, 6, 7}

}
.

Now, we show that Mm ⊆
{
ϕ ∈ X : ϕi (0) = 0, ∀i ∈ {2, 3, 4, 6, 7}

}
. That is, for all n ≥ 0 and ϕ ∈ mX0, we have:

Eh (nω)Ih (nω)Rh (nω)Ev (nω)Iv (nω) = 0.
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Suppose that there exists an integer n1 such that,(
Eh (n1ω), Ih (n1ω),Rh (n1ω)

)
,Ev (n1ω), Iv (n1ω)

)T > 0.

Then, solving the equations of system (1), we derive that(
Sh (t),Eh (t), Ih (t),Rh (t), Sv (t),Ev (t), Iv (t)

)
∈ X0, ∀ t ≥ n1ω,

which contradicts that ϕ ∈ mX0. That requires Pn (ϕ) ∈ mX0, ∀ n ≥ 0. Hence, claim (22) holds.
Furthermore, claim (22) implies that E is the only �xed point of P and acyclic in mX0. In addition, Lemma 4.3 implies that

E is an isolate invariant set in X and W s (E) ∩ X0 = ∅, where W s (E) =
{
x ∈ X : lim supn→∞ d

(
Pn (x),E

)
= 0

}
is the stable

set of E. By the acyclicity theorem on uniform persistence for maps (see Zhao, 2003, Theorem 1.3.1 and Remark 1.3.1), it then
follows thatP is uniformly persistent with respect to (X0, mX0). So, the periodic semi�owΦ(t) is also uniformly persistent with
respect to X0. Hence system (1) is uniformly persistent.

Furthermore, Theorem 3.1 in (Magal and Zhao, 2006) implies that system (1) has at least one ω-periodic solution u(t, ϕ∗)
with ϕ∗ ∈ X0 for all t ≥ 0.

Now, let us prove that S∗h (0) and S∗v (0) are positive. If S∗h (0) = S∗v (0) = 0 then, we obtain that S∗h (t) > 0, S∗v (t) > 0 for all
t > 0. But using the periodicity of solution, we have Sh (0) = Sh (nω) = 0 and Sv (0) = Sv (nω) = 0, that is a contradiction. �

5 Numerical simulations
In this section, we perform some numerical simulations to support our theoretical analysis given in Sections 3 and 4. To illustrate
our results, we use the standard incidence rate as in (Traoré et al., 2018; Traoré et al., 2020).

f
(
t, Iv (t)

)
= aβ(t) Iv (t)

Nh (t)

g
(
t, Ih (t),Rh (t)

)
= β(t) bIh (t) + cRh (t)

Nh (t)
,

where

• β(t) is the periodic biting rate of mosquitoes to humans,

• a is the probability of infection from infectious mosquitoes to susceptible humans,

• b is the probability of infection from infectious humans to susceptible mosquitoes,

• c is the probability of infection from immune humans to susceptible mosquitoes.

It is obvious that functions f and g satisfy assumptions (H5), (H6), (H7), (H8) and (H9).

5.1 Estimation of model parameters
We suppose that the total human population for the concerned region is 1,500,000 and the life expectancy is 50 years. Then,
the human recruitment rateΛh and natural death rate dh can be respectively estimated as follows:

dh =
1

12 × 50
= 0.0016 per month,

Λh = dh × 1,500,000 + 2600 = 5000 humans per month.

Moreover, the values of some constant parameters for malaria transmission model (1) are listed in Table 1.
Moreover, assuming that the average number of mosquito bites depends on their gonotrophic cycle which is also a function

of temperature, then according to Lou and Zhao (2010), the duration of mosquito gonotrophic cycles can be �tted by Tejerina
et al. (2008):

G(θ) =
30.4

107.204 − 13.3523θ + 0.677509θ2 − 0.0159732θ3 + 0.000144876θ4 per month,

where θ represents the temperature.
Then, the temperature-dependent biting rate of mosquitoes is given by:

β(θ) =
107.204 − 13.3523θ + 0.677509θ2 − 0.0159732θ3 + 0.000144876θ4

30.4
per month.
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Parameters Values References Dimensions
Λh 5000 estimated month−1

dh 0.0016 estimated month−1

dp 0.0028 Lou and Zhao, 2010 month−1

αh 3.04 Lou and Zhao, 2010 month−1

rh 0.0159 Lou and Zhao, 2010 month−1

γ 0.0167 Lou and Zhao, 2010 month−1

αv 2.523 Chitnis et al., 2008 month−1

a 0.022 Chitnis et al., 2008 -
b 0.48 Chitnis et al., 2008 -
c 0.048 Chitnis et al., 2008 -
τ 0.49 estimated month−1

Table 1: Parameters used for numerical simulation.

Similarly, we have:

dv (θ) = 3.04 + 29.564 exp
(

75, 935.7 − θ
2.7035

)
per month

and
di (θ) =

30.4
−4.4 + 1.31θ − 0.03θ2 .

Assuming that the temperature varies as a function of time, then we can write functions β and dv in the following general
form:

β(t) = β0 + β̃0 cos
(
πt
6

)
, dv (t) = α0 + α̃0 cos

(
πt
6

)
, di (t) = γ0 + γ̃0 cos

(
πt
6

)
.

For our computation, we use the reproduction function B(t,Nv (t)) = i(t)Nv (t), where i(t) is the egg-laying rate per adult
female per month. In addition, since the ω-periodic function i(t) is proportional to the biting rate β(t) (Wang and Zhao, 2018),
then we have i(t) = eβ(t). Finally, function B(t,Nv) is read as follows:

B(t,Nv (t)) = eβ(t)Nv (t).

5.2 Numerical results
Using the values in Table 1, we simulate model (1) with di�erent values of the basic reproduction number, R0, in order to
illustrate our theoretical results and analyze its behavior.

5.2.1 Persistence of malaria

Considering the initial conditions Sh (0) = 1,000,000, Eh (0) = 30, Ih (0) = 20, Rh (0) = 499,950, Sv (0) = 2,950,000,
Ev (0) = 30,000, Iv (0) = 20,000, we obtain what appears in Figure 2(a)–(f).

Figure 2 shows that malaria persists in both populations and system (1) converges toward a positive periodic solution. This
numerical result is obtained with R0 = 1.10 > 1 that illustrates the result of our Theorem 4.2.

5.2.2 Extinction of disease

To study the extinction of the disease, we assume that after several years of infection, humans realize the seriousness of the
infection and decide to implement some measures to control the expansion of the disease. These measures are intended to
prevent mosquito bites and to reduce the number of adult mosquitoes in the city through the use of bed nets and insecticides.
Thus, using the values in Table 1 and considering the following initial conditions Sh (0) = 250,050, Eh (0) = 250,000, Ih (0) =
500,000, Rh (0) = 499,950, Sv (0) = 20,000, Ev (0) = 30,000, Iv (0) = 2,950,000, we obtain what appears in Figure 3(a)–(d).

Figure 3 shows that despite the high initial proportion of infected humans and mosquitoes, the disease disappears from both
populations in the long run and the solution of system (1) converges to the periodic disease-free equilibrium (N ∗h , 0, 0, 0,N ∗v (t),
0, 0) which is globally asymptotically stable. That illustrates the result of our Theorem 4.1.

Moreover, since functions B, dv, β and di are temperature dependent, then a simple variation in temperature has signi�cant
e�ect on the dynamics of the disease transmission. That situation means that malaria resurgence can happen in certain regions
due to climate change.
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(a) Density of susceptible humans. (b) Density of susceptible mosquitoes.

(c) Density of exposed humans. (d) Density of exposed mosquitoes.

(e) Density of infectious humans. (f) Density of infectious mosquitoes.

Figure 2: Persistence of malaria for β0 = 8, β̃0 = 4, α0 = 4.5, α̃0 = 1.5, γ0 = 2.85, γ̃0 = 1.5, e = 2.5 and R0 = 1.10.
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(a) Density of susceptible humans. (b) Density of susceptible mosquitoes.

(c) Density of infectious and immune humans. (d) Density of infectious mosquitoes.

Figure 3: Extinction of malaria for β0 = 6.95, β̃0 = 3, α0 = 5, α̃0 = 3, γ0 = 2.5, γ̃0 = 1.5, dp = 0, e = 2.5 and R0 = 0.91.

(a) Density of infectious humans. (b) Density of infectious mosquitoes.

Figure 4: Evolution of infectious humans and mosquitoes for β0 = 8, β̃0 = 4, α0 = 4.5, α̃0 = 1.5, γ0 = 2.85, γ̃0 = 1.5, e = 2.5.

5.2.3 Effect of the maturation period on the dynamics

In order to reduce the malaria-induced death rate for humans, it is necessary to know the relative importance of the di�er-
ent factors responsible for its transmission. Thus, we will analyze the impact of the duration of the immature state on the
transmission. Considering the following initial conditions Sh (0) = 1,000,000, Eh (0) = 30, Ih (0) = 20, Rh (0) = 499,950,
Sv (0) = 2,950,000, Ev (0) = 30,000, Iv (0) = 20,000, we obtain what appears in Figure 4(a)–(b).

Figure 4 shows that a small perturbation of the maturation delay has a large impact on the transmission of malaria. Indeed,
the number of infected humans and mosquitoes increases (resp. decreases) if the delay is low (resp. is high). Thus, the maturation
delay of immature mosquitoes is an important factor in the dynamics of malaria transmission. Hence, it can be used to control
the transmission.

6 Conclusion
In this paper we have presented a mathematical model of malaria transmission with seasonal �uctuation by using a general
periodic incidence function and a general reproduction function. The immature mosquitoes have been considered in the model
and their maturation period has been incorporated too. The basic reproduction number, R0 of the non-autonomous periodic
model has been determined, and we have shown that it is the threshold parameter between the persistence and the extinction of
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the disease. It emerges from our study that under some assumptions, the periodic disease-free equilibrium is globally stable if
R0 < 1, whereas the disease is persistent if R0 > 1.

Moreover, we have computed the basic reproduction number of the autonomous model associated to our periodic model
and then we have shown that the choice of incidence function has a large impact on the dynamics of malaria transmission. For
example, we have shown that the basic reproduction number calculated with standard incidence function (used by Lou et al.)
is smaller than basic reproduction number calculated with saturated incidence function (used by Roop et al.) Thus, to avoid
the use of several incidence functions in the modeling of malaria transmission, we have constructed a general function which
include a large class of incidence function. In addition, we have shown that maturation period has signi�cant e�ect on the disease
transmission dynamics. More precisely, the length of the maturation period determines how fast or how slow the disease will
progress within an area. That result has been numerically illustrated by using speci�c initial values and di�erent lengths of the
maturation period (see Figure 4). Thus, numerical simulations have shown that the maturation period τ of juvenile mosquitoes
is an e�cient parameter in �ghting against malaria transmission. However, in practice it is challenging to control the duration
of the juvenile stage. Nevertheless, we can avoid this challenge by incorporating the compartment of juvenile mosquitoes in the
model. That will allow elimination of the disease through the juvenile population reduction.

Moreover, we note that the global stability of the positiveω-periodic solution has not been established due to the complexity
of the model (Traoré et al., 2020; Li et al., 2017; Hu and Sun, 2011). So, we keep this problem for future investigations.
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