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Abstract

X. Song and Z. Xiang [7] develop an impulsive differential equations model for a
two-prey, one-predator model with stage structure for the predator. They demon-
strate the conditions on the impulsive period for which a globally asymptotically
stable pest-eradication periodic solution exists, as well as conditions on the im-
pulsive period for which the prey species is permanently maintained under an
economically acceptable threshold. We extend their model by including stage
structure for both predator and prey and also by adding stochastic elements in
the birth rate of the prey. As in [7], we find the conditions under which a globally
asymptotically stable pest-eradication periodic solution exists.

Keywords: integrated pest management, mixed model, impulsive differential
equations

1 Introduction

It is well known that a variety of pest species pose a serious health risk to humans and pets, as
well as causing great damage to property and crops. For virtually all pest species, biological
eradication is biologically impossible or economically infeasible [10]. However, it has been
shown that with an integrated pest management (IPM) approach, utilizing combinations of
pesticides, predator species, and prey disease, prey species can be controlled at economically
and environmentally feasible levels. The IPM approach has been proven superior to either
purely biological control or chemical control [7].

A number of recent articles have mathematically modeled a variety of IPM approaches
using impulsive differential equations, taking into account, for example, stage structure in
the predator species and periodically varying environmental conditions [7]. In the current
literature, similar models also have been considered [9, 10]. These deterministic models
assume fixed birth rates for the prey species. As is more realistic in most ecosystems,
we consider a random birth rate following a prior distribution with a mean that replaces
the fixed birth rate of the previous models considered in [7, 9, 10, 11, 12]. This approach
generalizes the model to accommodate random fluctuations, not just periodic fluctuations, in
the birth rate due to environmental and climatic factors. In ecosystems, it is common for the
reproductive behavior and fecundity of insect species to be altered by varying environmental
and climatic factors such as temperature, light levels, and day length [6]. The stochastic
birth rate component in the proposed model accommodates factors such as shortened day
length and lower temperatures, which may induce varying levels of egg production [6]. Also,
it recognizes that a fixed birth rate really represents an “average” birth rate, which may
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produce misleading results as to the resources necessary to ensure a high probability of pest
eradication. This is most important in cases in which the population of the prey species
is especially sensitive to changes in the potency of the pesticide. This semi-deterministic
method is a novel approach. It can be applied to cases in which a priori information is
available for birth rate distributions. For instance in cases where small birth pulses are
highly probable, a right-skewed probability distribution maybe employed. In fact, even if
nothing is known about the prior pulse rates, that is, if any pulse is as likely, then one can use
what is called the non-informative prior distribution by assigning equal probabilities under
the uniform distribution. The results we obtain will provide information on the necessary
values of other parameters that will ensure a high probability of eradication of the prey
species under varying birth rates of the prey species.

The present paper is organized as follows: in Section 2, we discuss our impulsive differ-
ential equations model, introducing the essential variables and parameters. In Section 3,
we use Floquet Theory and results from [7] to establish conditions on the impulsive period
for which our pest eradication solution is (i) locally asymptotically stable and (ii) globally
asymptotically stable. In Section 4, we introduce a right-skewed distribution for the birth
rate parameter b for the prey species. We present numerical results showing the relation-
ship between the birth rate parameter b and value of E, the pesticide potency or application
effectiveness.

2 The Mixed Model

Our deterministic model consists of a prey species with a juvenile class x1 and a mature
class x2, and a predator species with a juvenile class y1 and a mature class y2. The prey
species is born periodically at time intervals of length T via a birth pulse of the form

πb1x2(t)

q1 + x1(t) + x2(t)
+

(1− π)b2x2(t)

q2 + x1(t) + x2(t)
, where b1, b2, q1, and q2 are positive parameters af-

fecting the birth rate, as considered in the model in [8] and 0 ≤ π ≤ 1. Our model generalizes
the model considered in [1] by considering this mixed birth pulse expression. At the instant
of each pulse, the two predator classes y1 and y2 are augmented by p1 and p2 respectively.
That is, the two predator classes are increased by p1 and p2 by introducing more of the
predator into the population. at the instant of each pulse. Immediately after the births,
pesticide is sprayed, which kills a fraction E of both the juvenile and mature prey classes.
The prey population is also decreased due to predation by the mature predators only, with
parameter r > 0. The handling time of both x1 and x2 by the predator is h, and the
conversion rate of killed prey in excess of what is needed for maintenance into births of new
predators is λ. For instance, if λ = 0, then there is no effect of kills on predator births.
Similarly, for very small positive values of λ, the efficiency of conversion is minimal. This
conversion rate expression was also used in the models in [7, 9]. The maturity rates for the
prey and predator species are mx and my, respectively. That is, 1/mi is the mean length of
the juvenile period. The death rate of the predator is µ. The model equations are given by

x′1(t) = −mxx1(t)− rx1y2(t)
x′2(t) = mxx1(t)− rx2y2(t)

y′1(t) =
λr(x1(t) + x2(t))y2(t)

1 + rh(x1(t) + x2(t))
− (my + µ)y1(t)

y′2(t) = myy1(t)− µy2(t)

 , t 6= nT,

x1(t+) =

(
x1(t) +

πb1x2(t)

q1 + x1(t) + x2(t)
+

(1− π)b2x2(t)

q2 + x1(t) + x2(t)

)
(1− E)

x2(t+) = x2(t)(1− E)
y1(t+) = y1(t) + p1
y2(t+) = y2(t) + p2

 , t = nT. (1)
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This is a system of impulsive differential equations, which we consider only in the biologically
meaningful domain D = {(x1, x2, y1, y2) |x1 ≥ 0, x2 ≥ 0, y1 ≥ 0, y2 ≥ 0}. For details on the
theory of impulsive differential equations, we refer to the reader to the monograph [4]. For
periodic solutions of such impulsive differential equations, see [2]. Furthermore, Lemmas 3.1
and 3.2 provide simple examples of such periodic solutions.

3 Stability

We will need the following lemmas for the arguments in this section.

Lemma 3.1 (Song and Xiang [7]). The system

u′(t) = a− bu(t), t 6= nT,
u1(t+) = u1(t) + p, t = nT,
u1(0+) = u0 ≥ 0

(2)

has a unique positive, periodic, globally asymptotic solution ũ with period T , given by

ũ =
a

b
+
p exp(−b(t− nT ))

1− exp(−bT )
, nT < t ≤ (n+ 1)T, n ∈ N,

and

ũ(0+) =
a

b
+

p

1− exp(−bT )
.

For any other solution u(t) of the system, we have |u(t)− ũ(t)| → 0 as t→∞.

Lemma 3.2 (Song and Xiang [7]). Consider the subsystem

y′1(t) = −(my + µ)y1(t)
y′2(t) = myy1(t)− µy2(t)

}
, t 6= nT,

y1(t+) = y1(t) + p1
y2(t+) = y2(t) + p2

}
, t = nT. (3)

The subsystem (3) has the positive, periodic, globally asymptotic solution

ỹ1(t) =
p1 exp(−(my + µ)(t− nT ))

1− exp(−(my + µ)T )

ỹ2(t) =
(p1 + p2) exp(−µ(t− nT ))

1− exp(−µT )
− p1 exp(−(my + µ)(t− nT ))

1− exp(−(my + µ)T )

 , nT < t ≤ (n+ 1)T,

with initial values

ỹ1(0+) =
p1

1− exp(−(my + µ)T )

ỹ2(0+) =
p1 + p2

1− exp(−µT )
− p1

1− exp(−(my + µ)T )

 . (4)

The following lemma will be needed for the proof of global stability. Its proof is straight-
forward and similar to the proof of Theorem 5.1 in [11].

Lemma 3.3. There exists a constant D > 0 such that x1(t) ≤ D, x2(t) ≤ D, y1(t) ≤ D, and
y2(t) ≤ D for each positive solution (x1(t), x2(t), y1(t), y2(t)) of system (1) and sufficiently
large t.
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Theorem 3.1. The pest eradication periodic solution (0, 0, ỹ1(t), ỹ2(t)) of system (1) is
locally asymptotically stable if

T <
1

mx
ln


((

πb1
q1

+ (1−π)b2
q2

)
− 1
)

(1− E) + exp(−rN)(1− E)2

(1− E)
(

1 +
(
πb1
q1

+ (1−π)b2
q2

))
− exp(rN)

 ,

or equivalently, if(
πb1
q1

+
(1− π)b2

q2

)
<

(1− exp(−rN)(1− E))(1− exp(−mxT − rN)(1− E))

exp(−rN)(1− exp(−mxT ))(1− E)
,

and globally asymptotically stable if

(πb1 + (1− π)b2) <
1− exp(−rN)(1− E)

exp(−rN)(1− E)
,

where

N =
µp2 +my(p1 + p2)

µ(my + µ)
.

Proof. We first prove that the solution is locally asymptotically stable using Floquet Theory
for impulsive differential equations (see [2]). We begin by taking a small amplitude perturba-
tion (u1(t), u2(t), ỹ1(t)+v1(t), ỹ2(t)+v2(t)) of the pest eradication solution (0, 0, ỹ1(t), ỹ2(t)).
Linearizing, we obtain the system

dΦ(t)

dt
=


−mx − rỹ2(t) 0 0 0

mx −rỹ2(t) 0 0
λrỹ2(t) λrỹ2(t) −(my + µ) 0

0 0 my −µ

Φ(t),

where Φ(t) is the fundamental solution matrix of the system with Φ(0) = I, the identity
matrix. The linearization of the pulse behavior is given by

P =


1− E

(
πb1
q1

+ (1−π)b2
q2

)
(1− E) 0 0

0 1− E 0 0
0 0 1 0
0 0 0 1

 .
Hence, the monodromy matrix of the system is M = PΦ(T ) or

(φ1 + b(φ2 − φ1))(1− E) bφ2(1− E) 0 0
(φ2 − φ1)(1− E) φ2(1− E) 0 0

∗∗ ∗ exp(−(my + µ)T ) 0
∗∗ ∗ ∗ exp(−µT )

 , (5)

where

b =
πb1
q1

+
(1− π)b2

q2
,

φ1 = exp

(
−
∫ T

0

(mx + rỹ2(t)) dt

)
,

and

φ2 = exp

(
−
∫ T

0

rỹ2(t) dt

)
.

The entries of M marked with “∗” are irrelevant in our analysis. By Floquet Theory, the
solution is locally asymptotically stable if the absolute values of the eigenvalues of M are less
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than one. This is always the case for the two eigenvalues exp(−(my + µ)T ) and exp(−µT ).
The other two eigenvalues are the eigenvalues of the submatrix

M =

[
(φ1 +

(
πb1
q1

+ (1−π)b2
q2

)
(φ2 − φ1))(1− E)

(
πb1
q1

+ (1−π)b2
q2

)
φ2(1− E)

(φ2 − φ1)(1− E) φ2(1− E)

]
. (6)

Observe that
det(M) = φ1φ2(1− E)2 > 0 (7)

and that

trace(M) =

(
φ1 + φ2 +

(
πb1
q1

+
(1− π)b2

q2

)
(φ2 − φ1)

)
(1− E) > 0. (8)

Thus
1 + det(M) + trace(M) > 0. (9)

Therefore the two eigenvalues of the matrix M are less than one in absolute value if (see [5]
and [3])

det(M) = φ1φ2(1− E)2 < 1, (10)

and

trace(M)− 1− det(M) =

(
φ1 + φ2 +

(
πb1
q1

+
(1− π)b2

q2

)
(φ2 − φ1)

)
(1− E)

− 1− φ1φ2(1− E)2 < 0. (11)

Clearly, inequality (10) is always satisfied, and inequality (11) is satisfied by the hypothesis.
Hence, the solution is locally asymptotically stable.

We next prove the global attractivity of our solution following the technique in [7].
Choose ε1 > 0 and ε2 > 0 sufficiently small so that

δ = (1− E)(1 + πb1 + (1− π)b2) exp

(
rε2T − r

(
p1 + p2
µ

− p1
my + µ

− myε1T

µ

))
< 1.

We observe that
y′1(t) ≥ −(my + µ)y1(t),

and consider the following comparison impulsive differential equation:

z′1(t) = −(my + µ)z1(t), t 6= nT,
z1(t+) = z1(t) + p1, t = nT,
z1(0+) = y1(0+) ≥ 0.

(12)

By Lemma 3.1, system (12) has a globally asymptotically stable, positive, periodic solution

z̃1(t) =
p1 exp(−(my + µ)(t− nT ))

1− exp(−(my + µ)T )
, nT < t ≤ (n+ 1)T.

By the Comparison Lemma for impulsive differential equations (see [4]), we have

y1(t) ≥ z1(t) > z̃1(t)− ε1. (13)

From this inequality, we obtain

y′2(t) ≥ my(z̃1(t)− ε)− µy2(t).

We next consider the comparison system

z′2(t) = −my(z̃1(t)− ε)− µz2(t), t 6= nT,
z2(t+) = z2(t) + p2, t = nT,
z2(0+) = y2(0+) ≥ 0.

(14)
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By direct calculation, we observe that for nT < t ≤ (n+ 1)T ,

z̃2(t) = −p1 exp(−(my + µ)(t− nT ))

1− exp(−(my + µ)T )
+

(p1 + p2) exp(−(µ(t− nT ))

1− exp(−µT )
− myε1

µ

is a positive, periodic, globally asymptotically stable solution of system (14). Again by the
Comparison Lemma, we have

y2(t) ≥ z2(t) > z̃2(t)− ε2 (15)

for sufficiently large t.
Now let w(t) = x1(t) + x2(t). From the first two equations of system (1), we obtain

w′(t) ≤ −rw(t)(z̃2(t)− ε2) (16)

for nT < t ≤ (n+ 1)T , and

w(t+) ≤ w(t)(1 + πb1 + (1− π)b2)(1− E) (17)

for t = nT . For w(t), we consider the comparison system

z′3(t) = −rz3(t)(z̃2(t)− ε2), t 6= nT,
z3(t+) = z3(t)(1 + πb1 + (1− π)b2)(1− E), t = nT,
z3(0+) = w(0+) = x1(0+) + x2(0+) ≥ 0.

(18)

By integrating from t = nT+ to t = (n+ 1)T , we obtain

z3((n+ 1)T ) = z3(nT+) exp

(
rε2T − r

∫ (n+1)T

nT

z̃2(t)dt

)
, (19)

where ∫ (n+1)T

nT

z̃2(t)dt =
(p1 + p2)

µ
− p1
my + µ

− myε1T

µ
.

We now obtain the stroboscopic map

z3((n+ 1)T+) = z3(nT+)(1 + πb1 + (1− π)b2)(1− E) exp

(
rε2T − r

∫ (n+1)T

nT

z̃2(t)dt

)
= z3(nT+)δ. (20)

Hence, z3(nT+) = δnz3(0+), and z3(nT+) → 0 as n → ∞. Equation (20) has the unique
equilibrium z∗3 = 0, which is globally asymptotically stable. Thus, system (18) has the
globally asymptotically stable solution z̃3(t) = 0. We can conclude that limt→∞ w(t) = 0,
and hence limt→∞ x1(t) = 0 and limt→∞ x2(t) = 0, since x1(t) ≥ 0 and x2(t) ≥ 0.

We next show that limt→∞ y1(t) = 0 and limt→∞ y2(t) = 0. For sufficiently small ε3 > 0,
there exists T1 > 0 such that 0 < x1(t) < ε3 and 0 < x2(t) < ε3 for all t > T1. The function

λr w(t)

1 + rhw(t)

is monotonically increasing for w(t) ≥ 0. By Lemma 3.3, w(t) ≤ 2D. Let

K =
2λrε3D

1 + rhε3
.

We now have
y′1(t) ≤ K − (my + µ)y1(t).
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Consider the comparison system

z′4(t) = K − (my + µ)z4(t), t 6= nT,
z4(t+) = z4(t) + p1, t = nT,
z4(0+) = y1(0+) ≥ 0.

(21)

By Lemma 3.1, this comparison system has the positive, periodic, globally asymptotically
stable solution

z̃4(t) =
p1 exp(−(my + µ)(t− nT ))

1− exp(−(my + µ)T
+

K

my + µ
.

Hence, for sufficiently small ε4 > 0 and large enough t, we have

y1(t) ≤ z4(t) < z̃4(t) + ε4. (22)

From the inequalities (13) and (22), we obtain

z̃1(t)− ε1 < y1(t) < z̃4(t) + ε4

for sufficiently large t. Letting ε1 → 0, ε3 → 0, and ε4 → 0, we obtain z̃1(t) → ỹ1(t) and
z̃4(t)→ ỹ1(t) as t→∞. Hence, limt→∞ y1(t) = ỹ1(t).

Using the fourth equation from system (1) and the inequality (22), we obtain the in-
equality

y′2(t) ≤ my(z̃4(t) + ε4)− µy2(t).

For this inequality, we consider the comparison system

z′5(t) = my(z̃4(t) + ε4)− µz5(t), t 6= nT,
z5(t+) = z5(t) + p2, t = nT,
z5(0+) = y2(0+) ≥ 0.

(23)

This system has a periodic, globally asymptotically stable solution

z̃5(t) = −p1 exp(−(my + µ)(t− nT )

1− exp(−(−my + µ)T )
+

(p1 + p2) exp(−µ(t− nT ))

1− exp(−µT )
+
my

µ

(
K

my + µ
+ ε4

)
for nT < t ≤ (n+ 1)T . By the Comparison Lemma, we have

y2(t) ≤ z5(t) < z̃5(t) + ε5 (24)

for sufficiently large t. The inequalities (15) and (24) imply that

z̃2(t)− ε2 < y2(t) < z̃5(t) + ε5

for sufficiently large t. Letting ε2 → 0, ε3 → 0, and ε5 → 0, we obtain z̃2(t) → ỹ2(t) and
z̃5(t)→ ỹ2(t) as t→∞. Hence, limt→∞ y2(t) = ỹ2(t). �

4 Discussion

In this paper, we consider an integrated pest management model with two stages for both
predator and prey, where prey births occur according to a birth pulse which is a mix of several
Beverton-Holt models. We found conditions for global stability of the pest eradication
periodic solution. In particular, we express this relationship in terms of an upper bound on
a linear combination of the parameters in the birth pulse expression.

It has not escaped our attention that this analysis could be repeated with more than

two Beverton-Holt birth pulse terms of the form
bix2(t)

qi + x1(t) + x2(t)
so that the entire birth

pulse becomes
n∑
i=1

πibix2(t)

qi + x1(t) + x2(t)
, where

n∑
i=1

πi = 1.

– 93 –



Integrated Pest Management Akman, Cairns, Comar, Hrozencik

The idea here would be to find the values of the πi that produce minimal variance in E,
the efficacy of the pesticide. This will produce the most stable IPM model in the sense
that variations in environmental conditions will require minimal variation in the efficacy of
the pesticide to control the pest population. Once we have the values of the πi that will
minimize the variance in E, we can then use data and vary the other parameters to get the
best-fit model. This approach offers several advantages. First, we can model a potentially
greater variety of birth pulse behavior, which is a priori unknown to the modeler. Second,
we have a method for selecting the best, in terms of minimal variance in E, from among
the different models. Third, once the optimal model has been selected, we can use known
methods to fit parameters, giving us a more realistic and accurate model for IPM.

Implementing a mixture of birth-pulse functions with weights πi is novel since with this
approach, we in fact construct a class of models not just a model whose validity depends
on particular data. These weights serve two important purposes. First, they explain the
percentage contribution of birth-pulse structures in relation to eradication. Second, they
help alleviate the restriction imposed by the lack of information on the birth pulse behavior
of pests in question. For instance, in our particular case, an equal weighted mixture of the
two functions would indicate that under any choice of the birth-pulse function the overall
model would be valid for predicting the level of pesticide efficacy E needed for eradication.
Similarly if, say π1 = 0 and π2 = 1, we can conclude that predicted level of E needed for
eradication would be achieved under the second birth pulse function for a given set of free
parameters.
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