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ABSTRACT
The synthetic drugs that are becoming increasingly popular in drug-
markets are some of the most destructive drugs which have made
headlines causing serious social and health care issues in the past
few years. In this work, a synthetic drug transmission model with
general contact rate and Holling Type-II functional responses among
susceptible and drug addicts (both psychological and physiological)
is proposed. Sensitivity analysis provides that controlling the contact
rate among the drug addicts and the susceptible is better than the
treatment. Further, an optimal control problem has been formulated
tominimize the cost and drug addiction by choosing the counselling
treatment (including awareness programmes) as a control variable.
Numerical analysis has indicated that if the control policy is imple-
mented, then it will be economically viable for long term. In the
proposed model system, it is observed how counselling can prevent
the psychologically addicted persons from taking more drugs.
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1. Introduction

Infectious diseases often have serious consequences on population and in fact, it can affect
their overall social well-being, health and other related developments. Moreover, the pre-
vention and control of disease transmission are important as it is related to high morbidity
and mortality. In recent years, infectious diseases such as influenza, flu, etc. have posed
major challenges across theWorld. These diseases not only increase the disease burden but
also add an economic burden on the society which affects the development plans of many
countries (The Economic and Social; Russell, 2004; World Health Organization, 2006). In
this context, we would like to mention that approximately 1.4 million deaths are caused
by various types of hepatitides (Hepatitis A-E) only each year (World Hepatitis Day, 2014).
Like these infectious diseases, drug addiction is another threat to the society. In fact, deaths
caused by only over-consumption of drugs have increased in these years. Some drugs
are natural, means they are derived from natural plants without using chemicals such as
opium poppies (heroin, morphine, codeine), coca leaves (cocaine), psilocybinmushrooms
(shrooms), marijuana, etc. But except natural drugs, there exist synthetic drugs which are
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created using chemicals (not natural ingredients). New synthetics appear in the market
constantly, therefore, it is not possible to give a compile list. Chemists who choose to evade
arrest can simply shift the formula slightly and come up with something new that might
not be listed in the text of laws that ban drugs. For illustration, K2 also known as Spice,
Ecstasy (Molly) and bath salts are all types of synthetic drugs. Their strength, composition
and ingredients are unknown to the consumers as synthetic drugs are created in illegal
laboratories to bypass regulations prohibiting controlled substances. Attractive names and
colourful appearances can sometimes hide their bad effects. Synthetic drugs are extremely
dangerous and can cause addiction, severe health issues and even death. Synthetic drugs
appeared first time in the United States around 2009 but their popularity is still increasing
for the last nine years (Tricia Escobedo, 2013). They are especially popular among teenagers
for their high level of accessibility (source). According to a study of theCenter for Substance
Abuse Research (CESAR) conducted in 2013 at theUniversity ofMaryland at College Park,
about 12% of high school students are found to take synthetic drugs regularly (TomoDrug
Testing, 2017). Most of them are not aware of the dangerous effects of these substances.

Synthetic drugs are known as ‘new drugs’ or ‘club drugs’ as they mainly appear in
entertainment venues. These drugs directly affect the central nervous system (CNS) as
a new type of chemical synthetic mental drugs. Methamphetamine, MDMA , triazolam,
etc. are the most common synthetic drugs. Synthetic drugs affect our psychology making
more addictive towards those rather than the traditional drugs. These drugs have their
own symptoms, i.e. when someone takes these drugs, he quickly appears psychotic symp-
toms such as excitement, mania, depression, hallucination and so on. Then gradually his
behaviour becomes out of control resulting in a series of social problems including serious
violent crimes. Moreover, many infectious diseases such as hepatitis and AIDS can eas-
ily infect drug-users (Kapp, 2008). Statistical data from South African police showed that
between 2002 and 2006, only drug-related crimes increased in a huge range, in fact from
621 to more than 3,000 in Cape Town. From the 2005 antenatal survey, HIV infections
increased almost 2.6% reaching in 15.7% from 2003 to 2005 in theWestern Cape Province
of South Africa (Kalula & Nyabadza, 2011).

Medical and healthcare facilities have improved significantly in the past few years but
for the complex nature of diseases, the policymakers find a bit difficult to decide the proper
detection and prevention. Different tools and techniques are designed to predict the system
dynamics and also to suggest suitable control intervention. Mathematical modelling is one
of the most useful tools for this purpose (Brauer & Castillo-Chavez, 2001; Gaff & Schae-
fer, 2009; Lenhart &Workman, 2007). Several research works have been done based on the
pharmaceutical as well as non-pharmaceutical control interventions such as vaccination,
quarantine, treatment, etc. Gaff and Schaefer (2009), Lenhart andWorkman (2007), Joshi,
Lenhart, Li, and Wang (2006).

A survey has given a graph that shows us the number of synthetic drug-users is continu-
ously increasing. For instance, from 2014 drug users in China has increased by 7.7% and by
the end of 2015, there are almost 2.354million drug users in China which include 1.34mil-
lion synthetic drug abusers which accounted for 57.1% (www.nncc626.com/2016-02/18/c
128731173 2.html.). International practice reveals that the ratio of explicit drug addicts to
implicit ones is 1:5. Although, in every country, registered addicts number are far below
than actual drug addicts. Also, young people are increasingly falling prey which increases
synthetic drugs transmission. Take China for example, from China’s drug situations report
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in 2015 (www.nncc626.com/2016-02/18/c 128731173 2.html.), 62.4% of the existing drug
addicts is below 35 years and the main reason of this much addiction is curiousness and
excitement. Someonemay think that they will not become an addict after taking once but it
is nothing but amisconception as literature reveals only using once can lead to addiction as
long as enough. As per the information of China National Narcotics Control Commission,
there is hardly anymature treatment of drugs addiction around theworld.Medications and
psychotherapy are themajor treatmentmeasures for drug addicts. At the time of admitting
to the drug institutions, the addict is first going through a process of detoxification which
helps them to recover cerebral neurons and improve sleep and followed by psychother-
apy which makes themmentally strong enough to restrain themselves from sucking drugs
repeatedly. But for the seized addicts, these methods are not so helpful. By the records of
the survey done in 2015 the people whose health condition is deteriorated by synthetic
drugs are almost 54.6% of total seized addicts in China (www.nncc626.com/2016-02/18/c
128731173 2.html.). So it is very important to take rationalmeasures tomonitor the present
rate of spreading of synthetic drugs.

By forming epidemic models, one mainly tries to simulate and reveals the nature
of epidemics and provides theoretical rules and results for preventing and control-
ling diseases (www.nncc626.com/2016-02/18/c 128731173 2.html., www.nncc626.com.)
(Cen, Feng, & Zhao, 2014; Fang, Li, Martcheva, & Cai, 2014; Feng, Cen, Zhao,
& Velasco-Hernandez, 2015; Huo, Chen, & Wang, 2016; Mulone & Straughan, 2009;
Mushanyu, Nyabadza, & Stewart, 2015; Nyabadza, Njagarah, & Smith, 2013; Saha
& Samanta, 2019a, 2019b; Samanta, 2011; Samanta, Sen, & Maiti, 2016; White
& Comiskey, 2007). White and Comiskey (2007) first studied a simple heroin model
where the authors divided the total population into susceptible, heroin addicts who
were not in treatment and heroin addicts who were under treatment. Mulone
and Straughan (2009) studied the qualitative behaviours on White–Comiskey model.
Samanta and Sharma (2012) modified heroin epidemic model by dividing the class of
drug users without treatment into two classes: light drug users and hard drug users.
Samanta (2011) analysed a nonautonomous heroin epidemic model with distributed time
delay. Fang et al. (2014) set up a heroin model with two distributed delays and with the
help of Lyapunov function, global asymptotic stabilities of steady states have been proved.
But in all these models, only traditional drugs have been considered. But compared to the
models related to the traditional drug, fewer research works have been done for synthetic
drugs (Ma, Liu, Xiang, & Li, 2018; Mushanyu et al., 2015; Nyabadza et al., 2013). Analy-
sis of methamphetamine transmission of Western Cape province of South Africa can be
found in the work of Mushanyu et al. (2015). The accidental drug-users may feel guilty
after taking drug first time because they may take it by mistake or bewitched by friends.
So many of them try to avoid the repetition of contacting with synthetic drugs consciously
once again and in general, they cannot be addictive. So, characterizing the effects of syn-
thetic drugs transmission (caused by psychology and physiology) is necessary. Taking into
account these factors, we attempt to analyse the transmission of synthetic drugs in this
work and also try to control the drug epidemic by implementing some effective measures.

Diseases exhibit a lot of economic burdenswhich includes productivity loss, health care-
related expenses, losses due to disease-related death and loss of employment, etc. Also,
implementation costs in policy choice include the cost for treatment, vaccination, etc. So,
policymakers have to implement such a policy that can control the spread of disease as
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well as can minimize the overall cost incurred during a certain time period. Based on the
availability of resources, a single control intervention or multiple control interventions can
be implemented. Several research works have already been done in epidemiology using
various control interventions including both pharmaceutical and non-pharmaceutical
interventions (Behncke, 2000; Castilho, 2006; Gaff, Schaefer, & Lenhart, 2011; Joshi,
Lenhart, Hota, &Agusto, 2015; Kassa &Ouhinou, 2015; Lenhart &Workman, 2007; Zeiler,
Caulkins, Grass, & Tragler, 2010). For example, Behncke (2000) have incorporated phar-
maceutical treatment andhealth-promotional campaigns as controlmeasures and analysed
their effect together with the importance of financial support for an SIR model. Qualita-
tive analysis indicates that control policies reduced the disease level while financial support
promoted the campaigns which helped to suppress the disease transmission rate.

In the present work, we have analysed how the awareness campaigns and regular
counselling can possibly reduce the addiction towards drugs in a certain population. We
have introduced a compartmental model with two stages of addiction (psychological and
physiological) and assumed that psychologically addicted individuals can go for regular
counselling to restrain themselves from taking drugs. The proposed model takes into con-
sideration that the individuals who are in treatment can move back to the physiologically
addicted phase if they stop counselling therapy and pharmaceutical treatments suddenly.
Overview of the rest of the article is as follows: in the following section, we have formu-
lated a synthetic drugs model with psychological and physiological addicts. In Section 3,
the well-posed behaviour of the basic mathematical model has been shown with the pos-
itivity and boundedness of the solution. In Section 4, the basic reproduction number
(R0) of the underlying model system is derived using next generation matrix method. In
Section 5, we perform equilibrium analysis and their existence criterion depending on R0.
Our study includes the stability analysis of the equilibrium points of the system which
has been presented in Section 6. Section 7 contains the sensitivity analysis of the system
which helps to find the effectiveness of the parameters on reproduction number. Numeri-
cal simulations for the proposed model system (without control) have been performed in
Section 8 to support the related analytical results. In the next part, we have formulated the
corresponding optimal control problem in Section 9. In the subsequent section, we have
performed numerical simulations for the proposedmodel system (with control) to validate
the analytical findings and in the last section, we end our paper with a brief discussion.

2. Mathematical model: basic equations

Synthetic drugs or club drugs are chemically created to impersonate another drug such as
marijuana, cocaine or morphine and are more harmful than the traditional drugs. These
drugs can affect on our CNS causing strong psychological dependence and can spread
mainly among youths in a high rate (Dangerous Synthetic Drugs, 2013). Here we have
divided the total human population (N(t)) into four classes at time t such as suscep-
tible (S(t)), psychologically addicts (P1(t)), physiologically addicts (P2(t)) and addicts
under treatment (T(t)). Also we have incorporated Michaelis–Menten (Holling type-II)
functional response to describe the transmission among (S,P1) and (S,P2). The suscep-
tible primarily become psychological addicts while first coming in contact with a drug
addict, but after getting habituated with taking drugs, the individual is likely to become a
physiological addict. A psychological or physiological addict will enter into the treatment
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compartment at the time of taking treatment and rehabilitation. We shall use S(t) = S,
P1(t) = P1, P2(t) = P2 and T(t) = T for sake of calculations. The corresponding model
dynamics is presented by the following system of non-linear ODE’s:

dS
dt

= � − δS − β2(N)SP1
A + S

− β1(N)SP2
A + S

, S(0) = S0 > 0,

dP1
dt

= β2(N)SP1
A + S

+ β1(N)SP2
A + S

− αP1 − (δ + γ )P1, P1(0) = P1,0 ≥ 0,

dP2
dt

= αP1 + ηT − ρP2 − δP2, P2(0) = P2,0 ≥ 0,

dT
dt

= γP1 + ρP2 − ηT − δT, T(0) = T0 ≥ 0.

All the model parameters are assumed to be positive constants with following interpreta-
tion:

�: This work focuses on drug users mainly in the age group 15−64 years (Kelly, Carvalho,
& Teljeur, 2003). Considering this fact, the rate of entering this age group every year is
taken as the recruitment rate (of susceptible) � assumed to be a constant.
β1,β2 : Probability of transmission from susceptible to physiological and psychological
drug addicts respectively.
A: Average number of contacts with others per unit time.
α: Proportion of psychological addicts who become physiological drug addicts by taking
drugs in a regular basis, i.e. escalation rate from psychological to physiological addicts.
η: Rate at which some drug-users in treatment may escape and reenter the physiological
addict state, i.e. relapse rate.
γ , ρ : Per capita pharmaceutical treatment rates for psychological and physiological
addicts respectively.
δ: Natural death rate.

Generally, a susceptible one can easily be caught into the web of drug when the individual
comes in contact with a physiological addict as well as a psychological addict. For the sake
of calculations, it is assumed that the probability of the susceptible to become a drug-user
after coming in contact with a physiological addict is a multiple of the probability of the
susceptible to become a drug-user after coming in contact with a psychological addict. So,
we are taking β2(N) = β (say) and β1(N) = bβ into the underlying model as the effective
contact rate where b is a positive constant.

Hence our model comes into the following form:

dS
dt

= � − δS − βS(P1 + bP2)
A + S

, S(0) = S0 > 0,

dP1
dt

= βS(P1 + bP2)
A + S

− αP1 − (δ + γ )P1, P1(0) = P1,0 ≥ 0,

dP2
dt

= αP1 + ηT − ρP2 − δP2, P2(0) = P2,0 ≥ 0,

dT
dt

= γP1 + ρP2 − ηT − δT, T(0) = T0 ≥ 0.

(1)
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From system (1), by adding all equations, we get

dN
dt

= � − δN ⇒ N → �

δ
as t → +∞.

So, the total population is N = �
δ
, which is a constant. Let us scale the state variables

with respect to the total population:

s = S
N
, p1 = P1

N
, p2 = P2

N
and r = T

N
.

Then system (1) becomes:

ds
dt

= δ − δs − βs(p1 + bp2)
a + s

dp1
dt

= βs(p1 + bp2)
a + s

− αp1 − (δ + γ )p1

dp2
dt

= αp1 + ηr − ρp2 − δp2

dr
dt

= γ p1 + ρp2 − ηr − δr

(2)

where a = A
N , with initial conditions:

s(0) = s0 > 0, p1(0) = p1,0 ≥ 0, p2(0) = p2,0 ≥ 0, r(0) = r0 ≥ 0. (3)

3. Non-negativity and boundedness

Let us discuss on positivity and boundedness of system (2) to ensure that the model is
well-posed or well behaved.

3.1. Non-negativity of solutions

Theorem 3.1: All solutions of system (2) that start in R
4+ remain non-negative forever.

Proof: As R.H.S of (2) is completely continuous and locally Lipschitzian on C, (s, p1, p2, r)
of system (2) with the initial conditions (3) exists and is unique on [0, ς], where 0 < ς <

+∞ (Hale, 1977). From the first equation of system (2), we get

ds
dt

= δ − δs − βs(p1 + bp2)
a + s

So, s(t) = exp
(∫ t

0
−
{
δ + β(p1(ω) + bp2(ω))

a + s(ω)

}
dω
)

×
[
s0 + δ

∫ t

0
exp

(∫ ω

0

{
δ + β(p1(θ) + bp2(θ))

a + s(θ)

}
dθ
)
dω
]

> 0, for s0 > 0.
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From the second equation of system (2), we get

dp1
dt

= βs(p1 + bp2)
a + s

− αp1 − (δ + γ )p1

p1(t) = exp
(∫ t

0
−
{

βs(ω)

a + s(ω)
− (α + δ + γ )

}
dω
)

×
[
p1(0) +

∫ t

0

[
bβp2(ω)s(ω)

a + s(ω)
exp

(∫ ω

0

{
βs(θ)

a + s(θ)
− (α + δ + γ )

}
dθ
)]

dω
]

≥ 0, for p1,0 ≥ 0.

From the third equation of system (2), we get

dp2
dt

= αp1 + ηr − ρp2 − δp2

p2(t) = e−(ρ+δ)t
[
p2(0) +

∫ t

0
e(ρ+δ)ω{αp1(ω) + ηr(ω)}dω

]

≥ 0, for p2,0 ≥ 0.

From the fourth equation of system (2), we get

dr
dt

= γ p1 + ρp2 − ηr − δr

r(t) = e−(η+δ)t
[
r0 +

∫ t

0
e(η+δ)ω{γ p1(ω) + ρp2(ω)}dω

]

≥ 0, for r ≥ 0

�

Theorem 3.2: All solutions of system (2) that start in R
4+ are uniformly bounded.

Proof:

Consider, N(t) = s(t) + p1(t) + p2(t) + r(t).

∴ dN
dt

= δ − δN.

The solution N(t) of the above differential equation has the following property:

0 < N(t) ≤ N(0)e−δt + (1 − e−δt) ,
where N(0) = s(0) + p1(0) + p2(0) + r(0).

As t → ∞, 0 < N(t) ≤ 1. �
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4. Basic reproduction number

Basic reproduction number (Brauer & Castillo-Chavez, 2001) is defined as the number of
psychologically addicted individuals who have started to take drugs for the first time after
getting touch with a single drug addict individual during his or her effective addiction
period when introduced into susceptible population.

In the following we will find the basic reproduction number R0 of system (2) with
the help of next generation matrix method formulation (van den Driessche & Wat-
mough, 2002).

Let x = (p1, p2, r, s) and a0 = α + δ + γ , a1 = ρ + δ, a2 = η + δ, then system (2) can
be written as

dx
dt

= F(x) − ν(x) =

⎛
⎜⎜⎝

βs(p1+bp2)
a+s
0
0
0

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

a0p1
−αp1 − ηr1 + a1p2
−γ p1 − ρp2 + a2r

−δ + δs + βs(p1+bp2)
a+s

⎞
⎟⎟⎠ ,

where F(x) is the new infection terms, ν(x) is the other terms.
The corresponding linearized matrices of F(x) and ν(x) evaluated at disease-free

equilibrium E0(1, 0, 0, 0) are respectively

F =

⎛
⎜⎜⎝

β
a+1

βb
a+1 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,V =

⎛
⎜⎜⎝

a0 0 0 0
−α a1 −η 0
−γ −ρ a2 0
β

a+1
βb
a+1 0 δ

⎞
⎟⎟⎠

Now, FV−1 is the next generation matrix of system (2) and basic reproduction number
of the system will be the spectral radius of matrix FV−1 denoted and defined as (van den
Driessche &Watmough, 2002):

R0 = r(FV−1) = β{(a1a2 − ηρ) + b (αa2 + ηγ )}
(a + 1)a0(a1a2 − ηρ)

> 0,

where a0 = α + δ + γ , a1 = ρ + δ and a2 = η + δ.

5. Equilibrium points: their existence

In this section, we will study the existence of equilibrium points of system (2). It hasmainly
two equilibrium points:

(1) Drug-free equilibrium (DFE): E0(1, 0, 0, 0),
(2) Drug addiction equilibrium: E∗(s∗, p∗

1, p
∗
2, r

∗).

• Existence of unique drug addiction equilibrium E∗(s∗, p∗
1, p

∗
2, r

∗)

Now we shall analyse the existence of drug addiction equilibrium E∗(s∗, p∗
1, p

∗
2, r

∗) of
system (2). In order to find the unique drug addiction equilibrium, let us consider the
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following: s > 0, p1 > 0, p2 > 0, r > 0 and

δ − δs∗ − βs∗(p∗
1 + bp∗

2)

a + s∗
= 0,

βs∗(p∗
1 + bp∗

2)

a + s∗
− (α + δ + γ )p∗

1 = 0,

αp∗
1 + ηr∗ − (δ + ρ)p∗

2 = 0,

γ p∗
1 + ρp∗

2 − (η + δ)r∗ = 0

(4)

Solving the equations of system (4):

p∗
1 = a1a2 − ρη

αa2 + ηγ
p∗
2, r

∗ = γ p∗
1 + ρp∗

2
αa2 + ηγ

p∗
2, p

∗
2 = δ(1 − s∗)(a + s∗)(αa2 + ηγ )

s∗a0R0(a + 1)(a1a2 − ρη)
,

s∗ = a
(a + 1)R0 − 1

.

So, s∗ > 0 when R0 > 1
1+a . Hence we have the following theorem:

Theorem 5.1: System (2) has a disease-free equilibrium E0(1, 0, 0, 0) and if R0 > 1
1+a , it

admits a unique endemic equilibrium E∗(s∗, p∗
1, p

∗
2, r

∗).

6. Stability analysis

In this section, we will study the local and global stability of system (2) at drug-free equilib-
rium E0(1, 0, 0, 0) as well as at drug addiction equilibrium E∗(s∗, p∗

1, p
∗
2, r

∗). The Jacobian
matrix of this system be

J =

⎛
⎜⎜⎜⎝

−δ − aβ(p1+bp2)
(a+s)2 − βs

a+s − bβs
a+s 0

aβ(p1+bp2)
(a+s)2

βs
a+s − a0 bβs

a+s 0
0 α −a1 η

0 γ ρ −a2

⎞
⎟⎟⎟⎠ , (5)

where a0 = α + δ + γ , a1 = ρ + δ and a2 = η + δ.

6.1. Local stability of E0

From (5), Jacobian matrix corresponding to E0 is

J|E0 =

⎛
⎜⎜⎜⎝

−δ − β
a+1 − bβ

a+1 0
0 β

a+1 − a0 bβ
a+1 0

0 α −a1 η

0 γ ρ −a2

⎞
⎟⎟⎟⎠

So, λ1 = −δ(< 0) and other three eigenvalues are the roots of the equation:

λ3 + Q1λ
2 + Q2λ + Q3 = 0,
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where Q1 = a0 + a1 + a2 − β
a+1 , Q2 = (a1a2 − ρη) − (a1 + a2)( β

a+1 − a0) − αbβ
a+1 ,

Q3 = −
(

β

a + 1
− a0

)
(a1a2 − ρη) − bβ

a + 1
{αa2 + γ η} = a0 (a1a2 − ρη) (1 − R0) .

Now, R0 < 1
1+a < 1 will give Q3 > 0. Also Q3 > 0 occurs only when (

β
a+1 − a0) < 0 and

it gives Q1 > 0.
By Routh–Hurwitz criterion E0 is locally asymptotically stable when Q1, Q3 > 0 and

Q1Q2 − Q3 > 0. Hence we lead to the theorem:

Theorem 6.1: The synthetic drug-free equilibrium E0 is locally asymptotically stable (LAS)
if R0 < 1

1+a with Q1Q2 − Q3 > 0.

6.2. Local stability of E∗

Now, the Jacobian matrix corresponding to E∗(s∗, p∗
1, p

∗
2, r

∗) is given by

J|E∗ =

⎛
⎜⎜⎜⎝

−δ − βa(p∗
1+bp∗

2)

(a+s∗)2 − βs∗
a+s∗ − bβs∗

a+s∗ 0
βa(p∗

1+bp∗
2)

(a+s∗)2
βs∗
a+s∗ − a0 bβs∗

a+s∗ 0
0 α −a1 η

0 γ ρ −a2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝
a11 a12 a13 0
a21 a22 a23 0
0 a32 a33 a34
0 a42 a43 a44

⎞
⎟⎟⎠ ,

× say.

The characteristic equation is given by

λ4 + B1λ3 + B2λ2 + B3λ + B4 = 0, where (6)

B1 = −(a11 + a22 + a33 + a44),

B2 = a11a22 + (a11 + a22) (a33 + a44) + a33a44 − a34a43 − a23a32 − a12a21,

B3 = (a11 + a22) (a34a43 − a33a44) + (a11 + a44) a23a32 + (a12a21 − a11a22)

× (a33 + a44) − a23a34a42 − a13a32a21,

B4 = a11a22 (a33a44 − a34a43) − a11a23 (a32a44 − a34a42)

+ (a13a21 − a12a21) (a33a44 − a34a43) .

By the Routh–Hurwitz criterion (Kot, 2001), it follows that all eigenvalues of the char-
acteristic equation have negative real part if and only if (i) Bi > 0 for i = 1, 2, 3, 4; (ii)
B3(B1B2 − B3) > B21B4.

Now, R0 > 1
a+1 ⇒ a22 = βs∗

a+s∗ − a0 < 0 ⇒ B1 > 0. So, we arrive to the following
result:

Theorem 6.2: The synthetic drug addiction equilibrium E∗ of system (2) is LAS if
Routh–Hurwitz criterion is fulfilled which is consistent with R0 > 1

1+a .
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6.3. Global stability of E0

Theorem 6.3: The synthetic drug-free equilibrium E0 of system (2) is globally asymptotically
stable (GAS) if R0 < 1

1+a .

Proof: To check the global stability of DFE, let us consider the following positive definite
function about E0 :

L(p1, p2, r) = 1
a + 1

p1 + βa2b
(a + 1)(a1a2 − ηρ)

p2 + βηb
(a + 1)(a1a2 − ηρ)

r

Here L(p1, p2, r) is a positive definite function for all (s, p1, p2, r) other than E0.
The time derivative of L computed along the solutions of system (2) is as follows:

dL
dt

= 1
a + 1

dp1
dt

+ βa2b
(a + 1)(a1a2 − ηρ)

dp2
dt

+ βηb
(a + 1)(a1a2 − ηρ)

dt1
dt

= βs(p1 + bp2)
(a + s)(a + 1)

− a0p1
a + 1

+ βa2b
(a + 1)(a1a2 − ηρ)

(αp1 + ηt1 − a1p2)

+ βηb
(a + 1)(a1a2 − ηρ)

(γ p1 + ρp2 − a2t1)

<
β(p1 + bp2)

(a + 1)
− a0p1

a + 1
+ βa2b

(a + 1)(a1a2 − ηρ)
(αp1 + ηt1 − a1p2)

+ βηb
(a + 1)(a1a2 − ηρ)

(γ p1 + ρp2 − a2t1)

= a0
{

β(N)

a + 1
− 1

a + 1
+ β(N)b(a2α + ηγ )

(a + 1)(a1a2 − ηρ)

}
p1

=
[
R0 − 1

a + 1

]
p1

< 0
(
if R0 <

1
a + 1

)

Furthermore dL
dt = 0 if and only if p1 = 0. Therefore, the largest compact invariant set

in {(s, p1, p2, r) ∈ � : dL
dt = 0}, when R0 < 1

1+a , is the singleton E0. Hence by LaSal-
lea’s invariance principle (LaSalle, 1976), E0 is globally asymptotically stable in � when
R0 < 1

1+a . �

6.4. Global stability of E∗

Theorem 6.4: If a(a + s∗) < ab < (a + s∗)2 holds, then the synthetic drug addiction equi-
librium E∗(s∗, p∗

1, p
∗
2, r

∗) of system (2) is globally asymptotically stable in the region �

where
� = {(x = s

s∗ , y = p1
p∗
1
, z = p2

p∗
2
,w = r

r∗ ) : 0 < y < x < 1, 0 < x + y < 1, z >
xy
x−y }.
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Proof: Let us consider the positive solution of the system (2) about E∗(s∗, p∗
1, p

∗
2, r

∗) and
construct the following Lyapunov function V as:

V(t) =
(
s − s∗ − s∗ln

s
s∗
)

+
(
p1 − p∗

1 − p∗
1 ln

p1
p∗
1

)
+ βa2s∗

a1a2 − ηρ

(
p2 − p∗

2 − p∗
2 ln

p2
p∗
2

)

+ βηs∗

a1a2 − ηρ

(
r − r∗ − r∗ln

r
r∗
)

Differentiating V(t) with respect to t along the solution of system (2), we get

dV
dt

=
(
1 − s∗

s

)
ds
dt

+
(
1 − p∗

1
p1

)
dp1
dt

+ βa2s∗

a1a2 − ηρ

(
1 − p∗

2
p2

)
dp2
dt

+ βηs∗

a1a2 − ηρ

×
(
1 − r∗

r

)
dr
dt

=
(
1 − s∗

s

)(
δ − δs − βs(p1 + bp2)

a + s

)
+
(
1 − p∗

1
p1

)(
βs(p1 + bp2)

a + s
− a0p1

)

+ βa2s∗

a1a2 − ηρ

(
1 − p∗

2
p2

)
(αp1 + ηr − a1p2) + βηs∗

a1a2 − ηρ

×
(
1 − r∗

r

)
(γ p1 + ρp2 − a2r)

By the steady-state of the equilibrium point, we have

δ = δs∗ + βs∗(p∗
1 + bp∗

2)

a + s∗
, a0 = βs∗(p∗

1 + bp∗
2)

a + s∗
1
p∗
1
,

a1 = αp∗
1 + ηt∗1
p∗
2

and a2 = γ p∗
1 + ρp∗

2
t∗1

.

Let, s
s∗ = x, p1

p∗
1

= y, p2
p∗
2

= z, t1
t∗1

= w.
Substituting these values, we get

dV
dt

=
(
1 − s∗

s

)[
−δ
(
s − s∗

)+ β

{
p∗
1s

∗

a + s∗
− p1s

a + s

}
+ bβ

{
p∗
2s

∗

a + s∗
− p1s

a + s

}]

+
(
1 − p∗

1
p1

)

×
[
β

{
p1s
a + s

− p1
p∗
1

p∗
1s

∗

a + s∗

}
+ bβ

{
p2s
a + s

− p2
p∗
2

p∗
2s

∗

a + s∗

}]
+ βa2s∗

a1a2 − ηρ

(
1 − p∗

2
p2

)

×
[
α

{
p1 − p2

p∗
2
p∗
1

}
+ η

{
r − p2

p∗
2
r∗
}]

+ βηs∗

a1a2 − ηρ

(
1 − r∗

r

)[
γ
{
p1 − r

r∗
p∗
1

}
+ ρ

{
p2 − r

r∗
p∗
2

}]

= −δ

s
(
s − s∗

)2 + βp∗
1s

∗

(a + s∗) (a + s)

[(
1 − 1

x

){
a(1 − xy) + s(1 − y)

}
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+
(
1 − 1

y

)
a(x − 1)y

]
+ bβp∗

2s
∗

(a + s∗) (a + s)

×
[(

1 − 1
x

)
{a(1 − xz) + s(1 − z)} +

(
1 − 1

y

){
a(xz − y) + s(z − y)

}]

+ βa2s∗

a1a2 − ηρ

(
1 − 1

z

)

× [αp∗
1(y − z) + ηr∗(w − z)

]+ βηs∗

a1a2 − ηρ

(
1 − 1

w

) [
γ p∗

1(y − w) + ρp∗
2(z − w)

]

= −δ

s
(
s − s∗

)2 + βp∗
1s

∗

(a + s∗) (a + s)

[
a
(
2 − x − 1

x

)
+ s
(
1 − y − 1

x
+ y

x

)]

+ bβp∗
2s

∗

(a + s∗) (a + s)

×
[
a
(
2 − 1

x
+ z − y − xz

y

)
+ s
(
2 − 1

x
+ z

x
− y − z

y

)]
+ βa2s∗

a1a2 − ηρ

×
[
αp∗

1

(
y − z − y

z
+ 1
)

+ ηr∗
(
w − z − w

z
+ 1
)]

+ βηs∗

a1a2 − ηρ

[
γ p∗

1

(
y − w − y

w
+ 1
)

+ ρp∗
2

(
z − w − z

w
+ 1
)]

If a(a + s∗) < ab < (a + s∗)2 holds, then in � = {(x, y, z,w) ∈ R4+ : 0 < y < x < 1, 0 <

x + y < 1, z >
xy
x−y }, we have:

dV
dt

≤ βss∗p∗
1

(a + s)(a + s∗)

(
1 − y − 1

x
+ y

x

)
+ abβs∗p∗

2
(a + s)(a + s∗)

(
2 − y + z − 1

x
− xz

y

)

+ bβss∗p∗
2

(a + s)(a + s∗)

(
2 − y − 1

x
+ z

x
− z

y

)
+ βa2s∗

a1a2 − ηρ

×
[
αp∗

1

(
y − z − y

z
+ 1
)

+ ηr∗
(
w − z − w

z
+ 1
)]

+ βηs∗

a1a2 − ηρ

[
γ p∗

1

(
y − w − y

w
+ 1
)

+ ρp∗
2

(
z − w − z

w
+ 1
)]

<
βss∗p∗

1
(a + s)(a + s∗)

(
1 − 1

x
+ y

x

)
+ bβss∗p∗

2
(a + s)(a + s∗)

(
2 − 1

x
+ z

x
− z

y

)

+ abβs∗p∗
2

(a + s)(a + s∗)

(
2 − 1

x
− xz

y

)

+ βa2s∗

a1a2 − ηρ
αp∗

1

(
1 − y

z

)
+ βa2s∗

a1a2 − ηρ
ηr∗
(
1 − w

z

)

+ βηs∗

a1a2 − ηρ
γ p∗

1

(
1 − y

w

)
+ βηs∗

a1a2 − ηρ
ρp∗

2

(
1 − z

w

)

<
βss∗p∗

1
(a + s)(a + s∗)

(
1 − 1

x
+ y

x

)
+ bβss∗p∗

2
(a + s)(a + s∗)

(
2 − 1

x
+ z

x
− z

y

)
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+ βs∗p∗
2

(
2 − 1

x
− xz

y

)

+ βa2s∗

a1a2 − ηρ
αp∗

1

(
1 − y

z

)
+ βηs∗

a1a2 − ηρ
γ p∗

1

(
2 − y

w
− w

z

)

+ βηs∗

a1a2 − ηρ
ρp∗

2

(
2 − z

w
− w

z

)

<
βss∗p∗

1
(a + s)(a + s∗)

(
1 − 1

x
+ y

x

)
+ bβss∗p∗

2
(a + s)(a + s∗)

(
2 − 1

x
+ z

x
− z

y

)

+ βa2s∗

a1a2 − ηρ
αp∗

1

(
3 − y

z
− 1

x
− xz

y

)
+ βηs∗

a1a2 − ηρ
γ p∗

1

(
4 − 1

x
− xz

y
− y

w
− w

z

)

<
βss∗p∗

1
(a + s)(a + s∗)

(
1 − 1

x
+ y

x

)
+ bβss∗p∗

2
(a + s)(a + s∗)

(
2 − 1

x
+ z

x
− z

y

)

< 0.

Also, dV
dt |E∗ = 0. Then by Lyapunov LaSallea’s theorem (LaSalle, 1976), E∗ is globally

asymptotically stable in the interior of � for R0 > 1
1+a . �

7. Sensitivity analysis

The basic reproduction number (R0) of system (2) depends on seven parameters, namely,
per capita contact rate (β), average number of contacts with others per unit time (a), esca-
lation rate from psychological to physiological addicts (α), relapse rate (η), per capita
treatment rates for psychological and physiological addicts, respectively (γ , ρ) and nat-
ural death rate (δ). Among these parameters, we cannot control the parameters: a, α, η, δ.
Therefore, to examine the sensitivity of R0 to the parameters β , ρ and γ , normalized for-
ward sensitivity index with respect to each of these parameters are computed as follows
(Arriola & Hyman, 2005):

�γ =
∣∣∣∣∣

∂R0
R0
∂γ
γ

∣∣∣∣∣ =
∣∣∣∣ γR0

∂R0
∂γ

∣∣∣∣ <
∣∣∣∣ γ {bδ(η − α) − (a1a2 − ρη)}
(a1a2 − ρη) + b(αη + ηγ + αδ)

∣∣∣∣ < 1

�ρ =
∣∣∣∣∣

∂R0
R0
∂ρ
ρ

∣∣∣∣∣ =
∣∣∣∣ ρ

R0
∂R0
∂ρ

∣∣∣∣ <
∣∣∣∣ −bρδ(αa2 + ηγ )

{δ(αa2 + ηγ ) + (a1a2 − ρη)} (a1a2 − ρη)

∣∣∣∣ < 1

�β =
∣∣∣∣∣

∂R0
R0
∂β
β

∣∣∣∣∣ =
∣∣∣∣ β

R0
∂R0
∂β

∣∣∣∣ = 1

So, it is clear that the basic reproduction number (R0) is most sensitive to changes in
β , probability of transmission from susceptible to drug addicts (both physiological and
psychological). If β increases R0 increases in same proportion and if β decreases R0 also
decreases in same proportion. On the other hand, ρ and γ have an inversely proportional
relationship with R0, i.e. the size of the increase in any of them causes a decrease in R0 and
a decrease in any of them causes an increase in R0. But the increase in ρ, i.e. the treatment
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rate for physiological addicts can not help as much as the treatment rate for psychological
addicts γ can do. So, it is better to focus either on β , the contact rate and γ , treatment rate
for psychological addicts. As R0 is more sensitive to changes in β than γ , so it is sensible
to focus on β , per capita contact rate to control the drug abuse in population.

8. Numerical simulations

In this section, we present computer simulations of different solutions of system (2) using
MATLAB. We have taken the total population as N=54 million in South Africa. Based
on the range provided in Table 1, we have made two tables (Table 2 and Table 3) for our
numerical simulation and verification.

Considering β = 0.0008 with the parametric values of Table 2, we have got R0 =
0.0019(< 1

1+a = 0.17), while for β = 0.8 we have got R0 = 1.92(> 0.17). Moreover, β =
0.8 along with the parameter values from Table 2 provides drug addiction equilibrium
E∗ = (0.47, 0.01, 0.27, 0.24). It is observed that for R0 < 0.17 the susceptible population
(s) only persists and psychologically addicted (p1), physiologically addicted (p2) popu-
lation and those who are under treatment (r) are going to extinct, i.e. the population
approaches to the drug-free equilibrium or disease-free equilibrium E0(1, 0, 0, 0). We have
taken mainly six initial points in the drawing of the stability diagram in three-dimension
of E∗ as: (a.1) (0.5, 0.03, 0.3, 0.24); (b.1) (0.45, 0.03, 0.25, 0.24); (c.1) (0.49, 0.01, 0.29, 0.24);
(d.1) (0.46, 0.02, 0.28, 0.24); (e.1) (0.45, 0.01, 0.26, 0.24) and (f.1) (0.47, 0.03, 0.3, 0.24).
Figures 2–4 have been depicted on the basis of parameter values of Table 2.

When the parameter values from Table 3 are considered, β = 0.0008 gives R0 =
0.0095(< 1

1+a = 0.17) but for β = 0.8, we have R0 = 9.50(> 0.17). β = 0.8 along with
the parameter values from Table 3 provides drug addiction equilibrium as E∗ =
(0.09, 0.04, 0.04, 0.82). The initial values have been taken as: (a.2) (0.05, 0.01, 0.01, 0.82);

Table 1. Ranges of parametric values used in numer-
ical simulations.

Parameter Range Reference

� [1–1.2] Nyabadza et al. (2013)
β [0–0.9399] Kalula and Nyabadza (2011)
δ [0–0.025] Kalula and Nyabadza (2011)
α [0.0015–0.5] Kalula and Nyabadza (2011)
γ [0–0.3] Kalula and Nyabadza (2011)
ρ [0–0.99] Kalula and Nyabadza (2011)
η [0.00002–0.9] Kalula and Nyabadza (2011)
b 0.5 Estimated
a 5 Estimated

Table 2. Parametric values used in Figures 2–4.

Parameter δ b a α γ ρ η

Value 0.02 0.5 5 0.45 0.20 0.62 0.70

Table 3. Parametric values used in Figures 5–7.

Parameter δ b a α γ ρ η

Value 0.001 0.5 5 0.01 0.01 0.20 0.01
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Figure 1. Schematic diagram for the proposed drug model.

Figure 2. Stable behaviour of the system at (a)E0 and (b)E∗ for values of Table 2.

Figure 3. Globally stable behaviour of E∗ (Table 2).
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Figure 4. The trend of system (2) if bilinear effective contact rate is adopted (Table 2).

Figure 5. Stable behaviour of the system at (a)E0 and (b)E∗ for values of Table 3.

Figure 6. Globally stable behaviour of E∗ (Table 3).



18 S. SAHA AND G. P. SAMANTA

Figure 7. The trend of system (2) if bilinear effective contact rate is adopted (Table 3).

Figure 8. The relationships between basic reproduction number R0 and contact rate β or treatment
rates γ or ρ.

(b.2) (0.08, 0.04, 0.03, 0.82); (c.2) (0.05, 0.04, 0.03, 0.82); (d.2) (0.1, 0.01, 0.02, 0.82); (e.2)
(0.05, 0.03, 0.06, 0.82) and (f.2) (0.1, 0.05, 0.05, 0.82) to draw the stability diagram of E∗
in three-dimension. Figures 5–7 have been depicted on the basis of parameter values of
Table 3.

In the section of sensitivity analysis, we have already showed analytically that the con-
tact rate is more effective to control the drug abuse rather than providing treatment to
psychologically and physiologically addicts. The graphs in Figure 8 is consistent with our
analytical findings. It is observed that with increasing value of β , R0 increases monoton-
ically. On the other hand, increasing value of ρ and γ provide decaying graph of R0. For
the diagram in Figure 8, we have taken β = 0.0008 and the data from Table 2 for (a) and
from Table 3 for (b).

9. Optimal control problem

In this section, we have formulated an optimal control problem corresponding to sys-
tem (1) considering the effect of ‘awareness campaigns, counselling and other preventions’
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as control policy. We have taken system (1) instead of system (2) to get a better observa-
tion when the control policy is implemented. It is aimed to observe how a suitable choice
of the control variable can prevent the individuals from taking drugs and also to optimize
the cost incurred in the implementation of the control policy. First, we have to describe the
control policy and then to determine the cost corresponding to the policy.

Enhancing the response of psychological individuals via awareness programs and regular
counselling: Promoting the awareness programs and counselling in a regular interval can
induce the behavioural change among psychological individuals. Awareness campaigns
not only prevent the population from taking drugs but also make them aware about the
consequences. Now the availability of resources related to medical diagnosis, campaigns,
treatments, etc. cannot be unlimited, in view of this a saturated treatment rate function
εuP1
1+ξP1 has been incorporated in system (1). Here ε represents the treatment rate (via coun-
selling) together with the impact of awareness campaigns and u is the intensity of treatment
with saturation constant as ξ−1. There are different costs involved like diagnosis,medicines
and other related costs when counselling is provided. So, u can be used as a possible tool to
trigger the responsiveness of psychological individuals with 0 ≤ u ≤ 1. Here 0 represents
no improvement through counselling period, whereas 1 is indicating full improvement.
Hence the control intensity u fully depends on the effort of the psychological individuals
to stop themselves from taking drugs.

In the following, it is aimed to determine the optimal treatment via counselling with
minimum cost by implementing the control. From the previous discussions, we have got
that the acceptable set for the control variable u(t) as follows:

� = {u(t)|u(t) ∈ [0, 1], t ∈ [0,Tf ]
}
.

Here Tf represents the final time upto which the control policy can be executed. In this
case, u(t) is a measurable and bounded function.

9.1. Determination of total cost

Let us first determine the total cost which has to be minimized for control intervention in
the proposed model system.

Cost involved in counselling and awareness programs: The total cost which is associated
with disease burden and counselling policy for psychological patients is given by

∫ Tf

0

[
w1P1(t) + w2u2(t)

]
dt.

The cost associated with psychological patients for losing man power and correspond-
ing wealth is represented by w1P1(t) (Gaff & Schaefer, 2009; Joshi et al., 2006; Kassa
& Ouhinou, 2015). It also indicates the opportunity loss, i.e. the lose of productivity due to
addiction. The term w2u2(t) includes both the cost for awareness campaigns and the cost
regarding the counselling policy such as medication charges, diagnosis charges, etc. Hence
we incorporate a quadratic non-linear term u2(t) to present the cost (Gaff& Schaefer, 2009;
Joshi et al., 2006; Kassa & Ouhinou, 2015).
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The following control problem is considered based on the above-mentioned discussions
along with the cost functional J1 that has to be minimized:

J1[u(t)] =
∫ Tf

0

[
w1P1(t) + w2u2(t)

]
dt, (7)

subject to the following model:

dS
dt

= � − δS − βS(P1 + bP2)
A + S

,

dP1
dt

= βS(P1 + bP2)
A + S

− αP1 − (δ + γ )P1 − εuP1
1 + ξP1

,

dP2
dt

= αP1 + ηT − ρP2 − δP2,

dT
dt

= γP1 + ρP2 − ηT − δT + εuP1
1 + ξP1

,

(8)

with the initial conditions S0 > 0, P1,0 ≥ 0, P2,0 ≥ 0 and T0 ≥ 0. Here the functional J1
represents the total cost that means the sum of the costs as stated. The integrand is

L(S,P1,P2,T, u(t)) = w1P1(t) + w2u2(t),

which denotes the current value of cost at time t. Parameters w1 and w2 are positive
weights (assumed as constants) which balance the units of integrand also Gaff Schae-
fer (2009); Kassa Ouhinou (2015). Let us denote u(t) = u. The existence of optimal control
u∗ in � is guaranteed which mainly minimizes the cost functional J1.

Theorem 9.1: There exists an optimal control u∗ in � such that J1(u∗) = min{J1(u)}
corresponding to the control system (7)–(8).

Proof: Proof has been given in the appendix. �

Further, with the help of Pontryagin’s Maximum Principle, we characterize the optimal
control u∗ of the system in the following.

Theorem 9.2: Let u∗ be the optimal control and S∗,P∗
1 ,P

∗
2 ,T

∗ are corresponding optimal
states of the control system (7)–(8). Then there exists adjoint variable λ = (λ1, λ2, λ3, λ4) ∈
R
4 that satisfies the following canonical equations:

dλ1
dt

= δλ1 + Aβ(P1 + bP2)
(A + S)2

(λ1 − λ2),

dλ2
dt

= w1 + βS
A + S

(λ1 − λ2) + α(λ2 − λ3) + δλ2 +
{
γ + εu

(1 + ξP1)2

}
(λ2 − λ4),

dλ3
dt

= bβS
A + S

(λ1 − λ2) + ρ(λ3 − λ4) + δλ3,

dλ4
dt

= δλ4 − (λ3 − λ4)η,
(9)
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with transversality conditions λi(Tf ) = 0 for i = 1, 2, 3, 4. The corresponding optimal con-
trols u∗ is given as:

u∗ = min

{
max

{
0,

εP∗
1

2w2
(
1 + ξP∗

1
) (λ2 − λ4)

}
, 1

}
. (10)

Proof: The proof is given in the appendix. �

10. Numerical results and discussion

Till now we have analysed the stability conditions (both local and global) of the equilib-
rium points and also find the optimal control variable for corresponding optimal control
problem. The control variable minimizes the total cost that has been considered. Here we
have performed numerical simulations to validate our analytical results and also to observe
the involvement of control variable in the system dynamics.

We shall numerically solve the control system (8) along with (7) for the set of param-
eter values provided in Table 4 with the initial size of populations and information as:
S(0) = 56.18, P1(0) = 5.11, P2(0) = 1.43 and T(0) = 0.45. With the help of MATLAB,
the graphical scenarios for various cases have been obtained. Forward–backward sweep
method has been used to solve the optimal control problem. First we have to solve the
optimal state system ’forward in time’ and then we need to solve the adjoint state system
’backward in time’. In the next step, these optimal controls are updated using Hamiltonian
for optimality of the optimal system and for doing this we need to use the ’steepest descent
method’ (Kirk, 2012;Wang, 2009). The process will continue until the criterion for conver-
gence is satisfied. Time period of study and application of control interventions is around
1 year, i.e. 12 months.

Figure 9 shows the population graphs with respect to time in the absence of the
control, i.e. u = 0. For this situation, at Tf = 12, the population is (S∗,P∗

1 ,P
∗
2 ,T

∗) =
(56.3388, 0.1543, 6.0797, 0.8066). It is observed that the growth of psychological addicts
rapidly decreases during first 5 months and then slowly decreases after around half a year.
It is also noted that there are more addicted population in physiological state than in psy-
chological state.Moreover, there are a significant number of physically addicted population
present in the scenario around last few months which will create the economic burden

Table 4. Parametric values used in the model system.

Parameters value Source

� 0.02 person day−1 Gaff and Schaefer (2009)
ρ 0.1 day−1 Gaff and Schaefer (2009)
δ 0.00004 day−1 Gaff and Schaefer (2009)
γ 0.2 day−1 Kalula and Nyabadza (2011)
α 0.1 day−1 Kalula and Nyabadza (2011)
η 0.8 day−1 Kalula and Nyabadza (2011)
β 0.002 person−1day−1 (Joshi et al., 2015; Liu & Cui, 2008)
ε 0.6 day−1 Gaff and Schaefer (2009)
b 1 person day−1 Estimated
A 5 day−1 Estimated
ξ 0.045 Estimated
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Figure 9. Profiles of populations in absence of control i.e. when u= 0. Parameters are as in Table 4.

in terms of productivity loss, morbidity, mortality and in procuring protective measures
during the period.

Now we shall discuss about the effect of control intervention. The positive weights
have been considered as w1 = 1.6 and w2 = 10 (Gaff & Schaefer, 2009; Kassa & Ouhi-
nou, 2015). In Figure 11, the population profiles have been considered by taking the
counselling process (u) as control parameter. The optimality of the system has been
determined also. For this situation, at Tf = 12, the population is (S∗,P∗

1 ,P
∗
2 ,T

∗) =
(56.3387, 0.1539, 6.0801, 0.8065). Parameters have been taken from Table 4 along with
weights as mentioned. The counselling process works better to prevent the urge among
population of taking drugs regularly. The addicted population (psychological) are lower
than the case when control has not been incorporated. Also the recovery rate from the
addiction is quite higher in the early months in this case. The pictures show that there
will more physiologically addicted individuals if the addicted stop taking treatment and
counselling during their treatment period. It is true that the individuals who are psycho-
logically addicted will become cautious through regular counselling and this will lead to
a lower growth rate of physiologically addicted also. The corresponding intensity profile
of optimal counselling policy has been shown in Figure 10. It can be observed that in
early stage the control intervention work with its higher intensity but later the intensity
decreases gradually. It proves that a certain time is needed to convince a psychologi-
cally addicted person that up taking drugs in a regular basis is harmful and even can
cause physical damages. But once a person start understanding the affects, it becomes
easy to make them agree to take medicines and to do the other needful to get rid of this
addiction.

We have performed the cost design analysis for optimal control policy as ’cost effective-
ness is one of the important characteristics to decide the fitness’ (see Figure 12). Cost profile
along with the trajectory of psychologically addicted individuals for the optimal control
policy can be observed from Figure 12(a ,b). It is trivial when the control policy is used,
the optimal cost will be comparatively low than the situation when no control is applied.
Smaller number of addicted individuals will reduce the overall total cost via opportunity
loss in this case.
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Figure 10. Optimal intensity of treatment via counselling u∗. Parameters are as in Table 4.

Figure 11. Profiles of populations with optimal control u∗. Parameters are as in Table 4.

Figure 12. (a) Profile of psychologically addicted population under the control policy. (b) Cost distribu-
tion with the optimal control policy. Other parameters are as in Table 4.
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Figure 13. (a) Profiles of psychologically addicted population for various ξ with u∗. (b) Profiles of cost
for various ξ with u∗. Other parameters are as in Table 4.

Figure 14. Plots of control u∗ for various ξ . Other parameters are as in Table 4.

10.1. Effect of saturated treatment (through counselling) on optimal control
variable

This section contains how the counselling resources effect the system dynamics when the
control policy is applied with optimal intensity. The saturation on treatment (ξ) as well
as the treatment rate (ε) have been varied in the subsequent figures. Figure 13 depict the
profiles of psychologically addicted population and corresponding cost for various values
of ξ . Associated optimal control has been drawn in Figure 14. Increasing ξ provides an
increased value of psychologically addicted and associated cost also, because higher level of
addicted population is related to productivity loss also. From the optimal profile of control
variable, it has been concluded that higher saturation in treatment (i.e. smaller value of ξ)

will provide lower efforts on the control variable. Therefore, if the saturation in counselling
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Figure 15. (a) Profiles of psychologically addicted population for various ε with u∗. (b) Profiles of cost
for various ε with u∗. Other parameters are as in Table 4.

Figure 16. Plots of control u∗ for various ε. Other parameters are as in Table 4.

is sufficiently high, then itwill be economically viable andneeds comparatively lesser efforts
to implement the control.

On the other hand, when treatment rate (ε) is varied from 0.1 to 1, the addicted (psy-
chologically) population decreases following a reduction in associated cost also (Figure 15).
From Figure 16, it can be observed that with increasing value of ε, the maximum inten-
sity increases for the control that represents the treatment via counselling. Also, higher
treatment rate helps the optimal treatment to work with comparatively higher intensity.
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11. Conclusion

Synthetic drugs are created byman-made chemicals, but not by the natural ingredients. For
instance, K2 (Spice), Ecstasy (Molly) and bath salts are synthetic drugs. Synthetic drugs are
new types of artificial drugs which are quite acceptable among the drug addicts. Spreading
of synthetic drugs has its own characteristics unlike traditional drugs. For example, people
believe that the traditional drugs have more toxicity than the synthetic ones, so if someone
sucks the synthetic drug a little, he will not become addict. Based on this wrong psychol-
ogy, many people forget to take the proper precautions and be captured by synthetic drugs
gradually.

In this work, we have proposed a model where people is addicted to drugs both psy-
chologically and physiologically. Next generation matrix method helps us to find the basic
reproduction number R0 and this R0 gives (or consistent with) the local and global stabil-
ity conditions of the drug-free and drug addiction equilibria. The stability analysis gives
us that for R0 < 1

1+a , the drug-free equilibrium is globally asymptotically stable but for
R0 > 1

1+a , the drug addiction equilibrium is globally asymptotically stable. It means for
changing the value of R0 from more than 1

1+a to less than 1
1+a , the drug addiction could

be eliminated. Moreover, analysing the sensitivity of parameters γ , ρ and β about R0 we
have reached to the conclusion that controlling the spread of the synthetic drugs is better
than giving treatment to addicts. So, designing the rational measures to control the drug
transmission is important.

The next section of this paper is about an optimal control problem relative to the drug
abuse epidemic model so as to minimize the drug addiction as well as to minimize the cost
of treatment. We have redefined our model by taking the effect of counselling and aware-
ness campaigns as control variable and determined the total cost. The existence of optimal
control function has also been proved. Pontryagin’s Maximum Principle helps to deter-
mine the analytical characterization of the optimal control path. The analytical results and
simulations are quitemeaningful as the work presented here is dealt with current addiction
towards drugs. Through the numerical computations, we can deduce certain observations
that have already been discussed.

These days a large number of population, especially the young generation is exposed
to world of drugs due to various reasons. These populations can be considered as
the focal point for counselling. Because by considering them as susceptible popula-
tion, it is comparatively easier to assess how best to introduce regular counselling to
the psychological addicts in the model. Schools and families should aware the youths
about the importance of health education as well as the Government also has a duty
to initiate some serious steps to increase the awareness among the people. With the
help of campaigns and social programmes, people may realize the danger of syn-
thetic drugs and reduce the curiosity, which could lead to a lower contact rate. The
model qualifies the impact of counselling on psychological addicted population because
through numerical simulations we have come to the conclusion that the counselling
therapy can potentially reduce the addicted population from taking drugs. Moreover,
the effect of optimal response due to counselling can minimize the cost burden as well
as the number of addicted individuals. The policy can minimize the overall economic
load also. So, implementation of a proper control policy will be effective as well as
economical.
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Appendix

A.1 Existence of optimal control functions

In this section, we shall discuss the existence of optimal control variable which minimizes the cost
function in finite time. To establish the existence of this type of control, let us take the help of results
proved in Fleming and Rishel (1975), Gaff and Schaefer (2009), Gaff et al. (2011).

Proof of Theorem 9.1: For existence of optimal controls, the following conditions have to be satis-
fied:

(i) Set of solutions of the system (7) with control variables in � 	= φ.
(ii) � is closed, convex and state system can be expressed as a linear function of control variables

where the coefficients will depend on time and state variables.
(iii) The integrand L of Equation (7) is convex on � and L(S, P1, P2,T, u) ≥ g(u) where g(u) is

continuous and |u|−1g(u) → ∞ whenever |u| → ∞, here |.| represents the L(0,Tf ) norm.

From (8), the total population N = S + P1 + P2 + T.

So,
dN
dt

= � − δN;

The solution N(t) of the above differential equation has the following property:

0 < N(t) ≤ N(0)e−δt +
(

�

δ
− e−δt

)
,

where N(0) represents the sum of the initial values of the variables (S,P1, P2,T).
As t → ∞, 0 < N(t) ≤ �

δ
.

For the control variable in�, the solution of (8) is bounded and also the right hand side functions
are Lipschitzian with respect to state variables. So condition (i) holds by Picard-Lindelöf theorem
(Coddington & Levinson, 1955).

Now the control set� is closed and convex by definition. Also system (2) can bewritten as a linear
equation in control variable u with coefficients depending on state variables which proves that con-
dition (ii) is also satisfied. Now the quadratic nature of u ensure that the integrand L(S, P1, P2,T, u)
is convex.

Also L(S, P1,P2,T, u) = w1P1 + w2u2 ≥ w2u2

Let, g(u) = w2u2.
then L(S, P1, P2,T, u) ≥ g(u).
Here g is continuous and |u|−1g(u) → ∞whenever |u| → ∞. So, condition (iii) holds. Hence from
Fleming and Rishel (1975), Gaff and Schaefer (2009), Gaff et al. (2011), it can be concluded that there
exists a control variable u∗ such that J1[u∗] = min[J1[u]]. �

A.2 Characterization of optimal control functions

In this part, we derive the necessary conditions for optimal control function applying Pontryagin’s
Maximum Principle for the system (7)–(8) (Fleming & Rishel, 1975; Grass, Caulkins, Feichtinger,
Tragler, & Behrens, 2008; Pontryagin, 1987). We define the Hamiltonian as

H (S,P1, P2,T, u, λ) = L(S, P1,P2,T, u) + λ1Ṡ + λ2Ṗ1 + λ3Ṗ2 + λ4Ṫ
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So, H = w1P1 + w2u2 + λ1

[
� − δS − βS(P1 + bP2)

A + S

]

+ λ2

[
βS(P1 + bP2)

A + S
− αP1 − (δ + γ )P1

]

+ λ3 [αP1 + ηT − ρP2 − δP2] + λ4 [γP1 + ρP2 − ηT − δT]

(A1)

Here λ = (λ1, λ2, λ3, λ4) is called adjoint variable. By Pontryagin’s Maximum Principle, we shall
get minimized Hamiltonian that minimizes cost functional. Pontryagin’s Maximum Principle plays
a crucial role in adjoining the cost functional with the state equations by introducing adjoint
variables.

Proof of Theorem 9.2: Let u∗ be optimal control and S∗,P∗
1 , P

∗
2 ,T

∗ are corresponding optimal states
of the control system (8) which minimize the cost functional (7). Then by Pontryagin’s Max-
imum Principle, there exist adjoint variables λ1, λ2, λ3, λ4 which satisfy following canonical
equations:

dλ1
dt

= −∂H
∂S

,
dλ2
dt

= − ∂H
∂P1

;
dλ3
dt

= − ∂H
∂P2

,
dλ4
dt

= −∂H
∂T

.

So, we have

dλ1
dt

= δλ1 + Aβ(P1 + bP2)
(A + S)2

(λ1 − λ2),

dλ2
dt

= w1 + βS
A + S

(λ1 − λ2) + α(λ2 − λ3) + δλ2 +
{
γ + εu

(1 + ξP1)2

}
(λ2 − λ4),

dλ3
dt

= bβS
A + S

(λ1 − λ2) + ρ(λ3 − λ4) + δλ3,

dλ4
dt

= δλ4 − (λ3 − λ4)η,

(A2)

with transversality conditions λi(Tf ) = 0 for i = 1, 2, 3, 4.

Nowfromtheoptimalityconditions,
∂H
∂u

∣∣∣∣
u=u∗

= 0, whichgives u∗ = εP∗
1

2w2
(
1 + ξP∗

1
) (λ2 − λ4) .

From the above findings along with the characteristics of control set �, we have

u∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if
εP∗

1
2w2

(
1 + ξP∗

1
) (λ2 − λ4) < 0

εP∗
1

2w2
(
1 + ξP∗

1
) (λ2 − λ4) , if 0 ≤ εP∗

1
2w2

(
1 + ξP∗

1
) (λ2 − λ4) ≤ 1

1, if
εP∗

1
2w2

(
1 + ξP∗

1
) (λ2 − λ4) > 1

which is equivalent as (10). �

A.3 Optimality system

In this part, we state the corresponding optimality system using the optimal control function
u∗ which is characterized above. The optimality system with minimized Hamiltonian H∗ at
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(S∗, P∗
1 ,P

∗
2 ,T

∗, λ) is given as:

dS∗

dt
= � − δS∗ − βS∗(P∗

1 + bP∗
2)

A + S∗ ,

dP∗
1

dt
= βS∗(P∗

1 + bP∗
2)

A + S∗ − αP∗
1 − (δ + γ )P∗

1 − εu∗P∗
1

1 + ξP∗
1
,

dP∗
2

dt
= αP∗

1 + ηT∗ − ρP∗
2 − δP∗

2 ,

dT∗

dt
= γP∗

1 + ρP∗
2 − ηT∗ − δT∗ + εu∗P∗

1
1 + ξP∗

1
,

(A3)

with the initial conditions, S∗
0 > 0, P∗

1,0 > 0, P∗
2,0 > 0 and T∗

0 > 0. The corresponding adjoint
system is

dλ1
dt

= δλ1 + Aβ(P∗
1 + bP∗

2)

(A + S∗)2
(λ1 − λ2),

dλ2
dt

= w1 + βS∗

A + S∗ (λ1 − λ2) + α(λ2 − λ3) + δλ2 +
{
γ + εu∗

(1 + ξP∗
1)

2

}
(λ2 − λ4),

dλ3
dt

= bβS∗

A + S∗ (λ1 − λ2) + ρ(λ3 − λ4) + δλ3,

dλ4
dt

= δλ4 − (λ3 − λ4)η,

(A4)

with transversality conditions λi(Tf ) = 0 for i= 1,2,3,4 and u∗ is same as (10).
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