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ABSTRACT
In this paper, we consider compartmental disease transmissionmod-
els and discuss the importance of determining model parameters
that provide an insight into disease transmission and prevalence.
After a brief review and comparison of the performance of some
heuristic approaches, the paper introduces three approaches includ-
ing an optimization approach, a physics informed deep learning and
a statistical inference method to estimate parameters and analyse
disease transmission. The deep learning framework utilizes the hid-
den physics of infectious diseases and infer the latent quantities of
interest in the model by approximating them using deep neural net-
works. The performance of the deep learning method is validated
against representative small and big data sets corresponding to a
well-known benchmark example and the results indicate that deep
learning is a viable candidate to determine model parameters. The
paper also presents the need for researchers to understand different
types of dependencies exhibited in a typical data set and discovering
the most appropriate approaches for statistical inference. Specifi-
cally, in this work we apply a time-series inferential method with a
variety of statistical models. Our results indicate the efficiency and
importance of statistical inferencemethods for researchers to under-
stand and analyse time-series data to make confident predictions.
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1. Introduction

Understanding the dynamics of infectious diseases using mathematical models can be
traced back to first epidemicmodels proposed byKermack andMcKendric in 1927 (Brauer
& Castillo-Chavez, 2012; Kermack & McKendrick, 1927). This original compartmental
model assumed that the total population N may be divided into three distinct classes of
sub-populations S, I and R denoting the susceptible, infected and recovered classes respec-
tively. The susceptible class of individuals included members of the population that have
the potential to contract a disease and their size is denoted by S. The infected class of indi-
viduals are those that are assumed to have contracted the disease and this class is denoted
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Figure 1. Compartmental model for SIR model.

by I. The final class of individuals denoted by R consisted of those that recovered and can-
not contract the disease again. Further, it is also assumed that the number of individuals
in each of these classes (compartments) change with time, that is, S(t), I(t) and R(t) are
functions of time t and the total population N is the sum of the number of individuals in
these compartments. Hence,

N = S(t) + I(t) + R(t). (1)

Since models represent approximations to reality, one must make suitable assumptions to
simplify reality. In the development of themathematical model, two principal assumptions
were made in the Kermack McKendrick model that included that infected individuals are
also infectious and that the total population size N remains constant. This simple SIR epi-
demic model can be illustrated in compartments as in Figure 1. Not only was it capable
of generating realistic single-epidemic outbreaks but also provided important theoretical
epidemiological insights.

In Figure 1, it is assumed that each class resides within exactly one compartment and can
move from one compartment to another. Each compartment in the figure is represented
by a box indexed by the name of the class and arrows denote the direction of movement
of individuals between the classes. When a susceptible individual enters into contact with
an infectious individual, then that susceptible individual becomes infected with a certain
probability and moves from the susceptible to the infected class. Therefore, the susceptible
population decreases in unit of time by all individuals who become infected in that time
while at the same time the class of infectives will be assumed to increase by the same num-
ber of newly infected individuals. The dynamics of the three sub-populations S(t), I(t) and
R(t) may be described by the following SIR model given by first-order coupled ordinary
differential equations (ODE):

dS
dt

= −β S I,

dI
dt

= β S I − α I,

dR
dt

= α I.

(2)

Note that this closed system does not allow any births/deaths. This SIRmodel in system (2)
is fully specified by prescribing the transmission and recovery rates along with a set of initial
conditions S(0), I(0) andR(0). The total populationN at time t = 0 is given byN = S(0) +
I(0) + R(0). Adding all the equations in system (2), we notice thatN ′(t) = 0 and therefore
N(t) is a constant and equal to its initial value. One can further assume R(0) = 0 since no
one has yet had a chance to recover or die. Thus a choice of I(0) = I0 is enough to define
the system at t = 0 since then S0 = N − I0. If the epidemic is triggered by a single infected
individual, one can take t = 0 to be the moment at which I = I0 = 1.
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If we denote the parameter β , the transmission rate, then β S I denotes the number of
individuals who become infected per unit of time. It is also assumed that the individuals
that recover or die leave the infected class at a constant per capita probability per unit of
time which we denote as α, the recovery rate. This implies α I is the number of individu-
als per unit of time who recover and therefore leave the infectious class and move to the
recovered class. It is very important to obtain precise estimates of these disease transmis-
sion and recovery rates for epidemiological simulation models. Most often these rates are
estimated from longitudinal field data, which are costly and time-consuming to conduct
(Backer, Berto,McCreary, &Martelli, 2012; Caley&Ramsey, 2001). Formostmodels, these
parameters are hard to estimate because natural processes are stochastic, and transmission
events are influenced by other parameters than what can be included in a transmission
model (Anderson & May, 1992; Elkadry, 2013). Often some of the parameters such as the
recovery rate maybe estimated from patterns in the data but transmission rates have to be
computed using heuristic algorithms that are computationally or statistically motivated.
Some of these computational algorithms include inverse methods, least-squares approach,
agent-basedmodelling, using final size calculations (Martcheva, 2015;Murray, 1989; Polli-
cott, Wang, &Weiss, 2012; Yong, Mubayi, & Kribs, 2015). Also, researchers have employed
a variety of statistical approaches including maximum-likelihood, Bayesian inference and
Poisson regression methods (Capaldi et al., 2012; Hadeler, 2011; Huang, Liu, & Wu, 2006;
Longini, Koopman,Haber,&Cotsonis, 1988;O’Dea, Pepin, Lopman,&Wilke, 2014). Some
of this work also showed that the precision of the estimate increased with the number of
outbreaks used for estimation (O’Dea et al., 2014). To determine the relative importance of
model parameters to disease transmission and prevalence, there has also beenwork around
sensitivity analysis of the parameters using techniques such as Latin Hypercube Sampling
and Partial Rank Correlation Coefficients analysis with the associated mathematical mod-
els (Blower & Dowlatabadi, 1994; Chitnis, Hyman, & Cushing, 2008; McKay, Beckman,
& Conover, 1979).

Recently, there has been some new work around probabilistic machine learning to
discover governing equations expressed by parametric linear operators (Raissi & Karni-
adakis, 2018; Raissi, Perdikaris, & Karniadakis, 2017a, 2017b, 2017c, 2017d). Such equa-
tions involve, but are not limited to, ordinary and partial differential, integro-differential
and fractional order operators. A grand challenge in mathematical biology and epidemi-
ology with great opportunities facing researchers working on infectious disease modelling
is to develop a coherent deep learning framework that enables them to blend differential
equations such as the system (2) with the vast data sets now available. One of the tools
that makes these deep learning methods successful is the use of neural networks which is
a system of decisions modelled after the human brain (LeCun, Bengio, & Hinton, 2015).
Consider the illustration shown in Figure 2. The first layer of perceptrons first weigh and
bias the input which can be observed values of infected data. The next layer then will make
more complex decisions based off those inputs, until the final decision layer is reached
which generates the outputs which can correspond to the values of parameters such as β

and α. In this research, we implement a physics informed neural network-based approach
which makes decisions based on appropriate activation functions depending on the com-
puted bias (b) andweights (w). The network then seeks tominimize themean squared error
of the regression with respect to the weights and biases by utilizing gradient descent type
methods used in conjunction with software such as tensorflow. While there is currently
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Figure 2. An illustration of a neural network.

a lot of enthusiasm about ‘big data’, useful data in infectious diseases is usually ‘small’
and expensive to acquire. In this work, we will describe how one can apply such physics
informed neural network-based deep learning approaches and apply it to a real-world
example to estimate optimal parameters, namely the transmission and recovery rates, in
the SIR model. This is one of the novel contributions of this work.

Mathematical models for systems such as (2) coupled with statistical inference tech-
niques have allowed researchers to compare infectious disease theory and data which
in turn has helped to provide insight on transmission estimates, vaccine control strate-
gies and predicting future trends. Despite its simplicity, calibrating the SIR model against
time-series data has been a challenging problem over the years (Finkenstädt & Gren-
fell, 2000; Wallinga, Lávy-Bruhl, Gay, &Wachmann, 2001). One of the reasons is the need
for researchers to understand the different types of dependencies that are exhibited by
the data. A second contribution of this work includes discovering the most appropriate
approach to statistical inference to get a better understanding and analysis of the time-
series data. Within this efficient statistical approach, which, to the best of our knowledge,
has not been used before to investigate the trend of epidemic and infectious diseases, not
only multiple sources of dependencies among individuals are taken into consideration to
minimize estimation error and avoid making unreliable conclusions, but also the possibil-
ity of including transmission and recovery rates estimated from the real data is provided
to build more accurate models. Such predictive models can accurately estimate the cur-
rent trend of infection and predict the future trend, within the population of study. After
building the aforementioned statistical model and evaluating it, through cross validation,
it can be used to estimate the transmission and recovery rates, as well as infection trend,
in other populations. This can greatly assist epidemiologists and other scientists who want
to predict the infection rate of a disease in different regions and locations and be prepared
for the occurrence and outbreak of it in newly exposed regions.

In this paper, we start with analysing the system (2) to determine formulas for final sizes
for the susceptible and recovered populations. We then introduce one of the most com-
monly used benchmark examples with real-world data and discuss how these formulas
can be used along with estimated values of transmission and recovery rates to predict
and visualize the observed data. We illustrate how the work of a variety of researchers
(Martcheva, 2015; Murray, 1989; Yong et al., 2015) applied to the same real-world data
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end up predicting different transmission and recovery rates. Following this we also illus-
trate how one can predict these rates using an optimization algorithm that yields a better
comparison between the real-world data and the computed data. In Section 3, we present a
new paradigm of learning differential equations from small data for infectious diseases.
In particular, we introduce hidden physics models, which are essentially data-efficient
learningmachines capable of leveraging the underlying laws of physics, expressed by time-
dependent differential equations, to extract patterns fromhigh-dimensional data generated
from experiments. The proposed methodology may be applied to the problem of learning,
system identification or data-driven discovery of ordinary differential equations such as the
system (2). Our framework relies on Gaussian processes, a powerful tool for probabilistic
inference over functions, that enables us to strike a balance betweenmodel complexity and
data fitting.We note that our implementation of this new algorithm ends up predicting the
transmission and recovery rates with minimal information.We believe this is the first time
such a deep learning algorithm is applied in the context of infectious diseases. Section 4
provides some important tools and observations that researchers in this area should con-
sider employing to analyse time-series data through the real-world example. Once again,
we believe this is the first time such a time-series inferential method is applied in the infec-
tious diseases context. Finally, in Section 5, we summarize the discussions in the work and
conclude.

2. Estimating transmission and recovery rates

In this section, we introduce the concept of final size and derive explicit formulas to com-
pute them for system (2). Following that we introduce the data from a popular real-world
example of an influenza outbreak in a boys boarding school and introduce various tech-
niques to estimate the transmission and recovery rates as suggested by various researchers.
Finally, we present an optimization algorithm using Nelder–Mead that obtains optimal
estimates for the transmission and recovery rates that let the computed values of infected
data to be the closest to the observed values of the infected data.

2.1. Determining final size

Consider system (2). Note that from the first equation in system (2), S′(t) < 0 for all t and
therefore S(t) is monotonically decreasing. This implies that the number of susceptible
individuals is always declining independently of the initial condition S(0) and we also have

lim
t→∞ S(t) = S∞.

This quantity S∞ is called the final size of the epidemic. One may also note that when
S = α/β the second equation in system (2) to be zero, namely, I′(t) = 0. Hence, I(t)
can have a stationary point at some maximum time. On the other hand, the number of
infected individuals may bemonotonically decreasing to zero, or may have non-monotone
behaviour by first increasing to somemaximum level, and thendecreasing to zero.Onemay
note that the spread start to increase if I′(0) > 0 which yields the following necessary and
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sufficient condition for an initial increase in the number of infectives given by

β S(0)
α

> 1.

Thus if S0 < α/β , the infection dies out and there is no epidemic.
The last equation in system (2) also indicates that the recovered individuals also have

monotone behaviour, independent of R(0). Since R′(0) > 0 for all t, the number of recov-
ered is always increasing monotonically. Since we know that this number is constrained by
the total population N, we also have

lim
t→∞R(t) = R∞.

Dividing the first and third equations in system (2), one obtains

dS
dR

= −β

α
S,

which can be solved to yield

S(t) = S(0) e−(β/α) R. (3)

Since R<N this gives

S(t) ≥ S(0) e−(β/α) N > 0.

This implies that the final size S∞ > 0.
Integrating the first equation of system (2), one can show that

S0 − S∞ ≥ β S∞
∫ 1

0
I(t) dt.

This implies that I(t) is integrable on [0,∞) and hence

lim
t→∞ I(t) = I∞ = 0.

Since N = S∞ + R∞ = S0 + I0 is a constant, Equation (3) may be rewritten as

S∞ = S0e−(β/α) (S0+I0−S∞). (4)

If the parameters α and β are known along with initial number of susceptible population
S(0), this equation maybe solved numerically. On the other hand, if we know the final size
S∞ and the total population N, one can use this equation to estimate β/α. Dividing the
first and second equations of system (2), one can see that

dI
dS

= −1 + α

β S
, (5)

which yields

I + S − α

β
ln S = K,

where K is an arbitrary constant. Assuming then that I + S − (α/β) ln S = I0 + S0 −
(α/β) ln S0, one can calculate the maximum number of infected individuals Imax reached
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in the epidemic which occurs at S = α/β :

Imax = −α

β
+ α

β
ln

(
α

β

)
+ I0 + S0 − α

β
ln S0. (6)

If we are able to estimate Imax for a newly occurring infectious disease, one can determine
when the number of infections will begin to decline. Also, note that using Equation (5),
one can compute

R∞ = α

β
ln

(
S0
S∞

)
. (7)

2.2. Application to real data

In 1978, the BritishMedical Journal Lancet reported on 4March 1978 about an outbreak of
influenza virus in a boys boarding school (Anonymous, 1978). The school had a population
of 763 boys, all of whomwere at risk during the epidemic. One boy who had returned from
an overseas trip is believed to have initiated an influenza epidemic in the school after his
return. At the outbreak of the epidemic, none of the boys previously had influenza and
so no resistance to infection was present. Of these 512 were confined to bed during the
epidemic, which lasted from 22 January 1978 until 4 February 1978. This data is illustrated
in Figure 3 that also plots the data of convalescent who recovered after the illness.

Note that several researchers have interpreted the exact values of the infected number
of individuals extracted from the graph in Figure 3 very closely (Martcheva, 2015; Murray,
1989). We will use the representative dataset illustrated in Table 1 for our work. Based on
what one assumes is known in the SIRmodel in system (2), one can predict a variety of use-
ful quantities. One way to help realize the solution to the system (2) is to employ numerical

Figure 3. Sample influenza dataset epidemic in an English boarding school (Anonymous, 1978).
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Table 1. Sample influenza
dataset (Anonymous, 1978).

Day Infected number

1 3
2 8
3 28
4 75
5 221
6 291
7 255
8 235
9 190
10 126
11 70
12 28
13 12
14 5

methods that help approximate the differential equations. Specifically, in this work given
the estimated values of the parameters, wewill employ the higher orderRunge–Kuttameth-
ods to implement system (2) and study the dynamics of the three human sub-populations,
namely, Susceptible, Infected and Recovered. Our first task in order to study the dynamics
of system (2) is to estimate parameters β and α from the given data in Table 1.

2.2.1. Estimating parameters for unknown S∞
One can use a simple (but approximate) approach to obtain the estimate for the parameters
as follows. Since the epidemic was initiated by one sick boy infecting two more sick boys 1
day later, a crude approximation could be S′(t) ≈ −2 per individual per day.With S0 = 762
and I0 = 1, one can estimate the initial transmission rate to be

β ≈ −S′(t)
S I

≈ 2
762 × 1

= 0.0026.

The report indicated that the boys were taken to the infirmary within 1 or 2 days of becom-
ing sick. So one may estimate that 1/2 of the infected population was removed each day or
α = 0.5 per day. This then yields the ratio of α/β = 192. Using these values, one can then
plot the dynamics of the model predictions compared to the data using the system (2). We
employ a higher order Runge–Kutta method to implement system (2) and the dynamics
of the three sub-populations are plotted in Figure 4. Moreover, one can use Equations (4)
and (6) to determine S∞ = 16 and Imax = 306.

Using the SIR model (2), Murray (1989) also reported performing a careful fit for the
data in Table 1 to obtain α/β = 202, β = 0.00218 per day. The initial conditions were
assumed to be N = 763, S0 = 762 and I0 = 1. The dynamics of the model predictions
compared to the data using the system (2) is plotted in Figure 5. Note also that, using (6)
one can determine Imax = 445.

Note that the parameter values used to plot Figures 5 and 4 are close and predict a similar
course for the disease. The conditions for an epidemic are clearly met in both cases accord-
ing to the model since S0 > α/β . For our crude approximation, one can use Equation (7)
to yield to R∞ = 747.
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Figure 4. Dynamics of SIR model predictions and comparison to data for α = 0.5 and β = 0.0026.

Figure 5. Dynamics of the SIRmodel predictions and comparison to data forα = 0.5 andβ = 0.00218.

2.2.2. Estimating parameters for known S∞
Another approach to determine the rates was employed by Martcheva (2015) who noted
that number of boyswho seems to have escaped the influenza epidemicwas 19which serves
as S∞. Using Equation (4) with the data, one can determine the ratio:

β

α
= ln

( 762
19

)
763 − 19

= 0.00491704. (8)
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Figure 6. Dynamics of the SIR model predictions and comparison to data for α = 0.5 and β =
0.002481.

Assuming as before that the boys were quarantined in the infirmary for about 2 days as
infectious individuals, one canfind the recovery rate to beα = 1

2 = 0.5. FromEquation (8),
we can calculate the value of β = 0.002481. We can now use Equation (6) to determine
Imax = 293.4. Using these values, one can then plot the dynamics of the model predictions
compared to the data using the system (2) which is plotted in Figure 6.

It must be pointed out that this data set consists of a closed population. It must be also
noted that all thesemodels assumed that the recovery rate α can be computed heuristically.
However, there are also methods in the literature that can help to estimate the parameters
including S0,α and β in system (2) byminimizing the deviation between the SIRmodel out
and a given data set. One such method is the Berkeley Madonna method (Macey, Oster,
& Zahnley, 2000) which has been shown to fit the data using the fitting parameter as α

which was estimated to be 0.4421 whenN = 763 and β = 0.00218 (Yong et al., 2015). The
dynamics corresponding to these parameters is illustrated in Figure 7.

Clearly, from Figures 4–7, there are variations in the ability of the dynamics of the com-
puted values of infected population to track the true data for the various combination of
parameters. As noted, these parameters were calculated through heuristicmethods in some
of these algorithms and may not be optimal. Next, we consider an optimization algorithm
that employs a least-squares minimization approach to estimate optimal parameters.

2.3. Estimating optimal parameters α and β

One way to efficiently estimate the optimal parameters is to employ an unconstrained non-
linear optimization algorithm such as the Nelder–Mead algorithm which searches for a
local minimum using a regression approach. This direct search method attempts to min-
imize a function of real variables using only function evaluations without any derivatives
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Figure 7. Dynamics of the SIR model predictions and comparison to data for α = 0.4421 and β =
0.00218.

(Nsoesie, Beckman, Shashaani, Nagaraj, &Marathe, 2013). The minimized objective func-
tion is represented by differences in the daily infected counts from observed data and the
computer simulated data. Using the initial conditions S0 = 762, I0 = 1,R0 = 0 with a poor
guess for αguess = 0.1,βguess = 0.01, the optimization algorithm estimates the parameters
to be β = 0.002568 and α = 0.4768. The predicted dynamics of the three sub-populations
for these parameter values along with comparison to the true data is illustrated in Figure 8.

Figure 8. Dynamics of the SIR model predictions and comparison to data for α = 0.4768 and β =
0.002568.
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All the methods that have been discussed so far assumed the prior knowledge of initial
number of each of the human sub-populations including the Susceptible S0, Infected I0
and Recovered R0. Next, we introduce methods using physics informed deep learning that
will not only be able to predict parameters α and β but also help predict initial susceptible
population S0 along with the dynamics for given infected data from Table 1 and R0 = 0.

3. Physics informed deep learning approach

In the following, inspired by recent developments in physics-informed deep learning (Raissi
et al., 2017c, 2017d) and deep hidden physics models (Raissi & Karniadakis, 2018; Raissi
et al., 2017a, 2017b), we propose to leverage the hidden physics of infectious diseases (i.e.
Equations 1 and 2) and infer the latent quantities of interest (i.e. S, I and R) by approxi-
mating them using deep neural networks. This choice is motivated by modern techniques
for solving forward and inverse problems associated with differential equations, where the
unknown solution is approximated either by a neural network (Raissi et al., 2017c, 2017d;
Raissi, Perdikaris, & Karniadakis, 2018) or a Gaussian process (Raissi & Karniadakis, 2018;
Raissi et al., 2017a, 2017b). Following these approaches, we approximate the latent function

t �−→ (S, I,R)

by a deep neural network and obtain the following physics informed neural networks (see
Figure 9) corresponding to Equations (1) and (2), i.e.

E1 := dS
dt

+ β S I,

E2 := dI
dt

− β S I + α I,

E3 := dR
dt

− α I,

E4 := N − (S + I + R).

(9)

A schematic representation of the resulting physics informed neural networks is given
in Figure 9. Note that for simplicity of illustration, Figure 9 depicts a network that com-
prises of two hidden layers and four neurons per hidden layers. Networks with this kind

Figure 9. Physics informed neural networks.
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of many-layer structure – two or more hidden layers – are called deep neural networks.
These neurons in the network may be thought of as holding numbers that are calculated
by a special activation function that depends on suitable weights and biases correspond-
ing to each connection between neurons in each layer. With prior knowledge of such an
activation function, the problems boil down to identifying the weights and biases that cor-
respond to computed values of infected data that is close to the observed values. The three
sub-populations are approximated by the deep neural network with calculus on computa-
tion graphs using a backpropagation algorithm (Goodfellow, Bengio, Courville, & Bengio,
2016; Hecht-Nielsen, 1992; Schmidhuber, 2015).

We acquire the required derivatives to compute the residual networks E1, E2, E3 and E4
by applying the chain rule for differentiating compositions of functions using automatic
differentiation (Baydin, Pearlmutter, Radul, & Siskind, 2018). In our formal computations,
we employed a densely connected (physics uninformed) neural network, with 1 hidden
layer and 32 neurons per hidden layer which takes the input variable t and outputs S, I and
R. The activation function we employed was

σ(x) = tanh(x). (10)

We employ automatic differentiation to obtain the required derivatives to compute the
residual (physics informed) networksE1,E2,E3 andE4. It is worth highlighting that param-
eters α and β of the differential equations turn into parameters of the resulting physics
informed neural networks E1 − E4. The total loss function is composed of the regres-
sion loss corresponding to I and the loss imposed by the differential equations system (9).
Here, Id denotes the identity operator and the differential operator d/dt is computed using
automatic differentiation and can be thought of as an ‘activation operator’. Moreover, the
gradients of the loss function are backpropagated through the entire network to train the
parameters using a gradient-based optimization algorithm.

Specifically, in this work, we assume that the only observables are noisy data {tn, In}Mn=1
on the number of infected people I(t) that corresponds to the real-world data in Table 1.
Moreover, the only initial condition we assume is known as R(0) = R0. Given such data,
we are interested in inferring the latent (hidden) quantities S(t) and R(t). The shared
parameters of the neural networks for S, I and R in addition to parameters α and β of
the differential equations (2) can be learned by minimizing the sum of squared errors loss
function

SSE =
M∑
n=1

|I(tn) − In|2 + M|R(0) − R0|2 +
4∑

i=1

M∑
n=1

|Ei(tn)|2. (11)

Here, the first term corresponds to the training data on the number of infected I(t) while
the last term enforces the structure imposed by Equations (2) and (1) at a finite set of mea-
surement points whose number and locations are taken to be the same as the training data.
The middle term corresponds to the initial condition on R. It should be pointed out that
the number and locations of the points on which we enforce the set of differential equa-
tions could be different from the actual training data. Although not pursued in the current
work, this could significantly reduce the required number of training data on I.

The results are reported in Figure 10 where the algorithm learns the parameters α and β

to have values 0.454864 and 0.00229365, respectively. Predictions of the model for S, I and
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Figure 10. Physics informed deep learning model predictions and comparison to data with α =
0.454864 and β = 0.00229365.

R are plotted using solid blue lines while the data are depicted using red asterisks. Since
the total number of training data is relatively small, we chose to optimize the loss func-
tion (11) using L-BFGS; a quasi-Newton, full-batch gradient-based optimization algorithm
(Liu & Nocedal, 1989). For larger data sets, a more computationally efficient mini-batch
setting can be readily employed using stochastic gradient descent and its modern variants
(Goodfellow et al., 2016; Kingma & Ba, 2014).

It is worth emphasizing that automatic differentiation is different from, and in several
respects superior to, numerical or symbolic differentiation – two commonly encountered
techniques of computing derivatives. In its most basic description (Baydin et al., 2018),
automatic differentiation relies on the fact that all numerical computations are ultimately
compositions of a finite set of elementary operations for which derivatives are known.
Combining the derivatives of the constituent operations through the chain rule gives the
derivative of the overall composition. This allows accurate evaluation of derivatives at
machine precision with ideal asymptotic efficiency and only a small constant factor of
overhead. In particular, to compute the required derivatives we rely on Abadi et al. (2016),
which is a popular and relatively well-documented open-source software library for auto-
matic differentiation and deep learning computations. In TensorFlow, before a model is
run, its computational graph is defined statically rather than dynamically as for instance
in PyTorch (Paszke et al., 2017). This is an important feature as it allows us to create and
compile the computational graph for the physics informed neural networks (9) only once
and keep it fixed throughout the training procedure. This leads to significant reduction in
the computational cost of the proposed framework.

4. Statistical inference approaches

Whenever a number of events per time period is observed over time, the time series of
counts naturally appear.Moreover, when dealing with count data in a given disease data set
such as Table 1, the application of Poisson distribution in modelling such data is appropri-
ate. Looking at the infected numbers in Table 1, and considering the total count of students
(i.e. 763), there exists dependency among the infected numbers. Also, as explained earlier,
infected students did not get removed from the population until 1 or 2 days after they
were infected. Therefore, not only they were contagious and were infecting more students
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around them before removal, but they were also counted among the number of infected
students during the next days until they were removed.

From the graphs in Figure 3, we now consider the full data, shown in Table 2, as the real-
world data set for the statistical modelling of the influenza example. Figure 11 shows how
the infected numbers could be related to, and possibly affected by, the convalescent number
over time. To account for this potential influence, convalescent count was taken into con-
sideration as a covariate while studying the trend of the infection over time. Both types of
dependencies which existed among the observations needed to be addressed. Therefore,
a simple count model, where count observations are independent from each other, or a
regular longitudinal model, where the same sample is kept for each observation over time,
would not be appropriate for modelling this data, estimating the coefficients and making
predictions.

A time series model that takes into consideration the dependencies that existed among
the counts and adjusts for the multiple counting of some individuals, while adjusting for

Table 2. Full influenza dataset.

Day Infected number Convalescent

1 3 0
2 8 0
3 28 0
4 75 0
5 221 9
6 291 17
7 255 105
8 235 162
9 190 176
10 126 166
11 70 150
12 28 85
13 12 47
14 5 20

Figure 11. Infected and convalescent numbers in the English Boarding School.
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other interventions, is fitted to this data. The time series needed to be nonlinear since the
measured counts were not following a normal distribution, due to their discrete nature.
Many candidates were considered for this data, including autoregressive integrated mov-
ing average (ARIMA) models, but only non-linear models could explain the exponential
growth of the infected numbers halfway through the study and then the decline in the
numbers of infected students on the second half. The nonlinear time series fitted models
are shown in Figure 12. The Poisson count regression time series model shown in blue
(two dashed line with square) fits the data, and the changing trend of the infected num-
bers, the best while providing the closest estimates of the number of students infected per
day. The reason we opted for this model, which uses a quasi maximum likelihood-based

Figure 12. Statistical models of infectious diseases: Data (solid black line with circle), Poisson time series
(dotted red line with triangle), Poisson time series with logarithmic link (dashed purple line with cross)
and Poisson time series regression with logarithmic link (two dashed blue line with square). Non-
linear time series regression uses the previous data and covariates while predicting the future values
of infections.
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technique for estimating the parameters, is to address four issues we were facing while fit-
ting a statistical model to the Influenza data. These issues included small data, two types
of dependency among observations which were explained above, and the discrete count
nature of the data.

The fitted model within the class of count time series follows generalized linear models
and is flexible in describing serial correlation, which can be observed in epidemic dis-
ease studies, in a parsimonious way (Liboschik, Kerschke, Fokianos, & Fried, 2016). The
special case of this class, called integer-valued generalized autoregressive conditional het-
eroskedasticity (INGARCH)model with its log-linear extension, was applied here to detect
the unusual effects of structural changes and different forms of outliers influencing the
ordinary pattern of the data. Through conditional likelihood estimation, this model allows
modelling such interventions where an intervention directly affects the observation at its
occurrence, but not the underlying mean, and then also enters the dynamics of the pro-
cess. Within this model, we have linked the conditional mean of the observed infection
process to its past values, to past observations and to convalescent number as a covari-
ate. We considered a model with the Poisson conditional distribution and the logarithmic
link function. The fitted Poisson model using the identity link function is also shown in
Figure 12 in red (dotted line with triangle), which did not fit the data as well as when a
logarithmic link was used within the count (non-linear) Poisson time series regression.
This approach can be applied after the complete time series have been observed, like the
Influenza study, to build a general model if for instance this infection happens again within
the same or a different population. Themodel can also be built during an ongoing outbreak
to estimate the growth rate and the future counts.

The formulation of this model class is explained next, based on the notations used in
Liboschik, Fokianos, and Fried (2017). LetYt be a count time series (infected number here)
and Xt be a covariate vector (convalescent counts here). Assume Ft is the history of the
joint process of the count series and covariates {Yt , λt ,Xt+1} up to time t including the
covariate information at time t+ 1, where λt = E(Yt|Ft−1) is the rate at which the Poisson
process happens and the mean of counts at time t conditioned on the joint process of the
previous counts and covariates. The general model is of the form

g(λt) = β0 +
p∑

k=1

βk̃g(Yt−ik) +
q∑

l=1

αig(λt−jl) + η′Xt , (12)

where g is a link function (log link here), g̃ is a transformation function, η is the parame-
ter vector which corresponds to the effects of covariates, and P = i1, . . . , ip, Q = j1, . . . , jq
are sets of integers. These models are called INGARCH model of order p and q and also
as autoregressive conditional Poisson model. A distribution assumption on the condi-
tional distribution of Yt allows specification of the Poisson distribution for the count data
implemented in this study.

The use of quasi maximum likelihood-based inferences for such models allows making
1-step-ahead predictions (Liboschik et al., 2016). After applying a log-linear model with
the logarithmic link, as it allows for negative covariate effects, and adding a first-order
autoregressive term, to capture the short range serial dependence, a Poisson distribu-
tion was shown to be sufficient. Probability integral transform histograms, a marginal
calibration plot and the scoring rules (not shown here) were checked for finalizing the
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Table 3. Fitted time series.

Parameters Estimate Std. Error CI (lower) CI (upper)

(Intercept) 2.001 0.236 1.539 2.464
β1 0.892 0.056 0.782 1.003
α1 −0.279 0.068 −0.412 −0.146
η1 −0.0013 0.0006 −0.0024 −0.0001

distribution. Models with and without covarying convalescent counts were fit and as
obvious from Figure 12, the model excluding the covariate (the dashed purple curve
with cross) was not as good as the model that included this covariate (two dashed
blue curve with square). Table 3 shows the results of fitting the preferred model to the
Influenza data.

Using the general INGARCH time series model, Equation (12), the fitted model for the
number of infected individuals Yt in day t is given by Yt|Ft−1 Poisson(λt) with

log λt = 2 + 0.892Yt−1 − 0.279λt−1 − 0.001Xt , t = 1, . . . , 14,

where Xt is the covariate, at time t, and Yt−1 and λt−1 are the previous observations and
their lagged conditional means, respectively. As seen from the confidence intervals of the
estimated parameters, all the parameters of this model are significantly influencing the
number of infections. There is a notable dependence to the number of infected individuals
of the preceding day. Thismodel could be fitted to any infectious disease data set, to predict
number of infections and recoveries. As seen from the results, the predicted values are close
to the actual number of infections and the course for the disease.

5. Application of methods to extended dataset

In this section, we discuss the application of the parameter estimation, deep learning and
statistical approaches discussed in the earlier sections applied to an extended dataset with
over 100 observations as a proof of concept. We want to show through this example that
the methods presented in the earlier sections work consistently for a larger dataset as well.
The new extended data illustrated in Figure 13 was created from the original Influenza data
by interpolating the 14-day dataset to every 2 h during the 14 days. The reason for doing
this was to evaluate the performance of the aforementioned models with larger data. The
methods applied worked well with the new larger dataset with 157 observations and the
detailed results are included within the next three sections.

5.1. Estimating optimal parameters via parameter estimation

First we considered the parameter estimation technique using the unconstrained nonlinear
optimization that uses a regression approach to search for the best parameters byminimiz-
ing an objective function represented by the differences in the 2-h counts from observed
data and the computer simulated data. Using initial conditions S0 = 762, I0 = 1,R0 = 0
with a poor guess for αguess = 0.5,βguess = 0.01, the optimization algorithm estimates the
parameters to be β = 0.0002 and α = 0.0401. The predicted dynamics of the three sub-
populations for these parameter values along with comparison to the new extended dataset
is illustrated in Figure 14.
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Figure 13. Extended Dataset interpolated every 2 h from the 14-day Influenza Dataset.

Figure 14. Dynamics of the SIR model predictions and comparison to data for α = 0.0401 and β =
0.0002.

5.2. Estimating optimal parameters via deep learning

Next, we considered applying the Physics informed Deep Learning approach described in
this work to the extended dataset in Figure 13. As before, we acquire the required deriva-
tives to compute the residual networks E1, E2, E3 and E4 and employ densely connected
physics uninformed neural network with 1 hidden layer and 32 neurons per hidden layer
which takes the input variable t and outputs S, I andR. The shared parameters of the neural
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Figure 15. Physics informed deep learning model predictions and comparison to data with α =
0.0374007 and β = 0.00018133.

networks for S, I and R in addition to parameters α and β of the differential equations (2)
are then learned using Deep Learning approaches described by minimizing the sum of
squared errors loss function (11). The results are reported in Figure 15where the algorithm
learns the parameters α and β to have values 0.0374007 and 0.00018133.

5.3. Statistical inference approaches for extended dataset

To the best of our knowledge, literature of the modern time series approaches used in
this paper does not report a large sample size requirement for the INGARCH models
(Liboschik et al., 2016, Liboschik, Fokianos, & Fried 2017). As seen in Section 4, they per-
formed well while modelling small data. However, due to the fact that the variance of the
estimated coefficients can be slightly higher due to the smaller size of the original data used
in this study, we applied the same techniques to a larger data set and compared the results.

Same time series approaches that enabled us to take into consideration the dependency
among the infected counts while adjusting for the multiple counting of some individuals
and other interventions are fitted to the larger data. The time series needed to be nonlinear
since the discrete measured counts were not following a normal distribution. Similar to
Section 4, many candidates were considered for this data, including ARIMA models, but
only non-linear count Poisson time series models could explain the exponential growth
of the infected numbers for the first half of the study and the immediate decline in the
numbers of infected students on the second half of the data. The nonlinear time series
fitted models to the larger data are shown in Figure 16.

The count Poisson regression time series model with logarithmic link function, which
included convalescent numbers as a covariate, had the best fit when working with the
smaller data. The samemodel applied to the lager data resulted in the fitted values shown in
blue (solid line with asterisk) in Figure 16. Clearly, this model fits the data, and the chang-
ing trend of the infected numbers, well and even better than when the smaller data were
used. For the larger data, the fit of this model was not the best among the fitted models and
we anticipate the fit of this model to improve for different data sets and scenarios by the
inclusion of more covariates. The same count (non-linear) Poisson time series regression
fitted model using the identity link function is also shown in Figure 16 in red (solid line
with triangle), which has the best fit. The large data characteristics of the current data is
helping with this fit. The same model excluding the covariate is also shown in Figure 16 in
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Figure 16. Statistical models of infectious diseases: Data (solid black line with circle), Poisson time series
(solid red line with triangle), Poisson time series with logarithmic link (solid green line with cross) and
Poisson time series regression with logarithmic link (solid blue line with asterisk).

green (solid line with cross), which has a good fit but not as good as the previous model.
Due to the high number of observations, it might be difficult to see the differences among
the fitted models in Figure 16. Therefore, a zoomed-in version of this figure, where the
highest difference among fitted values was present, is provided in Figure 17 to show the
small differences in the fit of the models better.

After visually comparing the fit of the time series models through Figures 16 and 17,
we show three types of fit indices in Table 4 to numerically compare the fit of the afore-
mentioned models. Akaike information criterion (AIC), Bayesian information criterion
(BIC) and quasi information criterion (QIC) are the fit indices reported here. They repre-
sent the relative quality of a statistical model by measuring the amount of information lost
by that model. These criteria estimate the quality of each model, relative to other models
and therefore cannot be interpreted based on their absolute values. They rather need to be
compared across models and the model with the smallest AIC, BIC and QIC has the best
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Figure 17. Statistical models of infectious diseases (Zoomed-in version of Figure 16): Data (solid black line
with circle), Poisson time series (solid red line with triangle), Poisson time series with logarithmic link
(solid green line with cross) and Poisson time series regression with logarithmic link (solid blue line with
asterisk).

Table 4. Fit indices of time series models.

Fit Index Poisson Poisson (log link) Poisson regression (log link)

AIC 977.15 1096.68 1205.22
BIC 983.26 1105.85 1217.45
QIC 977.22 1166.92 1531.44

fit among the comparable fitted models. Table 4 shows that the first model, which is count
Poisson time series regression with identity link function, has the best fit. This result was
obvious in Figures 16 and 17 as well. Note that the other two models, which were count
Poisson time series regression with logarithmic link function without and with a covariate,
do not have a big difference in terms ofmodel fit; therefore, they each could be a reasonable
option to be adopted by researchers for such scenarios.
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Table 5. Forecast accuracy of time series models.

Accuracy Index Poisson Poisson (log link) Poisson regression (log link)

RMSE 4.82 9.29 10.85
MAE 3.39 6.45 5.65
MAPE 5.51 18.80 32.87

Evaluating the forecast accuracy of the fittedmodels is also important within time series
approaches. Table 5 shows the comparisons of three measures of forecast accuracy. These
accuracy measures are root mean square error (RMSE), mean absolute error (MAE) and
mean absolute percentage error (MAPE). Interpreting thesemeasures are slightly different.
A forecastmethod thatminimizes theMAEwill lead to forecasts ofmedian,while a forecast
method that minimizes the RMSE will lead to forecasts of the mean. Like the fit indices,
these forecast accuracy measures need to be compared across models and the model with
the smallest RMSE, MAE and MAPE is the most accurate in terms of forecasting. Table 5
shows that the first model, which is count Poisson time series regression with identity link
function, has the best forecast accuracy. The other two models, which were count Poisson
time series regressionwith logarithmic link functionwithout andwith a covariate, compete
with each other for the next best model in terms of forecast accuracy but do not have big
differences; therefore, either one of them could be a reasonable option to be adopted by
researchers for forecasting.

As it can be seen from the results of the statistical models, a larger sample size improved
the fit of the models. As it is clear from the results discussed above, the predicted values
are very close to the actual number of infections and the course for the disease, which
indicates these statistical inferencemethods can be adopted by researchers for varying sizes
of samples in the spread of such infectious diseases.

6. Discussion and conclusion

Since the introduction of the SIRmodel about a century ago, there has been a lot of work in
using variations of themodel to understand and track the spread of infectious diseases. The
compartmental SIRmodel that consisted of a system of coupled ordinary differential equa-
tions gave a framework to predict how a disease spreads, for example the prevalence (total
number of infected) or the duration of an epidemic. Also, the model allowed for under-
standing how different factors may affect the outcome of the epidemic which can influence
policy. While there has been a lot of progress made in utilizing SIR (and its variants) to
understand propagation of disease, there is still a great need to develop novel techniques
to estimate important model parameters such as transmission and recovery rates that help
determine the nature of the disease propagation.

We started by reviewing some of the analytical and heuristic methods that employ final
size computation formulas or BerkeleyMadonnamethod to determine the parameters and
then using them to compare the prediction to the actual real-world data. It was clear that
there are variations in these comparisons leading us to believe that there is still scope to
identify algorithms to determine best-fit parameters for a given data set. In this regard, the
simulation optimization approach was presented which employed a Nelder–Meade based
algorithm and was able to do a better job at estimating optimal parameters than many of
the existing heuristic methods presented earlier.
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Following this, the focus of the paper was on two main contributions including the
application of physics based deep learning for infectious diseases and statistical inference-
based time series methods. The authors believe that both these are introduced for the first
time to the mathematical biology community to help understand the need to develop less
expensive, more optimal computational and statistical methods that can provide reliable
information to predict disease dynamics withminimal data. The performance of these new
approaches was illustrated for a real-world benchmark application. To support the perfor-
mance of themethods, we applied the techniques to both small and large data sets.Wewere
able to show that in both cases, the parameter estimation approach and the Physics-based
deep learning approaches were able to recover consistent values of the transmission and
recovery rates. Statistical time series approaches used within this study also performed well
and resulted in a good fit and forecast accuracy in both cases. The fit and forecast accu-
racy improved by the increase in the size of the data. Our results clearly indicate that these
approaches are reliable candidates for parameter estimation and prediction of the spread
of a disease. The goal of this work was to introduce these approaches and hence they were
applied to a simple SIRmodel that has been used to track the spread of Influenza. We hope
to consider the application of these formore advancedmodels that have been established to
study the spread the propagation of other diseases such as Zika (Padmanabhan, Seshaiyer,
& Castillo-Chavez, 2017) in a forthcoming paper.
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