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ABSTRACT
Youth that live in public housing communities with high social and
financial needs are at risk of getting involved in illegal drug traffick-
ing gangs that are controlled by adults. This social disease spreads
like an epidemic in these densely populated sectors and metropoli-
tan area. In this work, a model based on SIR disease dynamics is
used to study the spread of gangs in vulnerable youth and adult
sub-populations. Three types of mixing patterns govern interaction
between the groups: proportionate, preferred and like-with-like. This
newmodel is analysed presenting formulations for the reproduction
number, sensitivity analysis, and stability analysis for the like-with-
like mixing. Insights gained from simulation results on the sensitivity
of themodel to parameters show the relevance of the activity param-
eter over the reproduction number when heterogeneous mixing is
present.
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1. Introduction

The spread of crime has been modelled as a disease in past work (McMillon, Simon,
& Morenoff, 2014; Mohammad & Roslan, 2017; Sooknanan, Bhatt, & Comissiong, 2013)
producingmulti-compartmentalmodels of a homogeneous population that are analysed to
gain insight on fighting this costly social problem in theU.S. and abroad. J. Sooknanan et al.
present a dynamical model of the formation of a gang that introduces a non-susceptible as
well as the susceptible group. In this onset stage when non-susceptible, susceptible and
gangmembers interact, prevention and intervention parameters are shown to significantly
impact gang membership. Our work considers the dynamics of gang formation in a sus-
ceptible heterogeneous population that is divided at onset in two groups: youth and adults.
The model is motivated by the critical social problem of youth joining illegal drug gangs
operating in the U.S. territory of Puerto Rico (PR) (Torres-Gotay, 2017). These gangs are
responsible for the great loss of young people into a life of crime due to recruitment into
drug trafficking gangs lead by adults. This situation has been recently exacerbated. A strug-
gling economy, a massive exodus of Puerto Rican families to the mainland, a shrinking
police force (Levantesi, 2018) and the aftermath of a deadly hurricane that hit the island

CONTACT C. Caiseda ccaiseda@bayamon.inter.edu

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is anOpenAccess article distributed under the terms of the Creative CommonsAttribution License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/23737867.2019.1656562&domain=pdf&date_stamp=2019-09-20
mailto:ccaiseda@bayamon.inter.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2 M. RIVERA-CASTRO ET AL.

in September 2017 (Silverstein, 2018) have contributed to the rise of drug-related criminal
activity ((Chakraborti, 2018), Fox News, CBS News, Center for investigative journalism).

In 2002 a government-funded study on juvenile delinquency and illegal drug traffick-
ing in PR was published by the Office of Youth Affairs. According to the study, adult gang
members will recruit socially vulnerable youth that have financial needs, have dropped out
of school and therefore have limitations to earn money legally (Muñoz-González, 2007).
They are trained as gunmen, watchmen, salesman, and to transport drugs. This study esti-
mated that police interventions with minors from seven to seventeen years-old were 2257
per 100,000 population, higher than the 1857 per 100,000 adult interventions. According
to an ex-gang member interviewed in this work, children as young as 11 years-old are
seen in drug-related gangs. Data from the 2016 Police Department Census show that there
are 542 active drug hot-spots, and 80% of these use minors, a form of human trafficking
(Rey-Hernandez & Hernandez-Angueira, 2014). Most of the drug hot-spots are located in
public housing projects that offer the needed protection for criminal activity of gangs, and
therefore operate in neighbourhoods where many vulnerable children live.

Minors are an asset for criminal gangs because the consequences of criminal behaviour
are necessarilymore lenient for youth than adults, as dictated by the juvenile justice system.
In some exceptional cases, a 14–18 year old could be tried as an adult because of the severity
of the crime, history and personality factors (Minor’s Court, 2018). A minor, according to
Minor’s Law (Law 88) in PR is defined as an individual under the age of 18. Minors that
face charges are tried in Minor’s Court that responds to a philosophy of rehabilitation and
protection of the minor as a developing citizen. Most offenses will not go to trial but to a
Diversion Programme. This Programme is determined by social worker recommendations
and negotiation between the legal defense and the Minor Procurator (i.e. the prosecutor).
In the rare cases when a minor is trialed and convicted of a major fault, the sentence will
have a maximum period of three years in a Juvenile Detention Center. After this, almost
all return to criminal activities and are commended by gang leaders.

The fundamental Susceptible-Infected-Recovered SIR model (Kermack & McK-
endrick, 1991a, 1991b) has been enhanced to express the contagion between two groups in
diseases transmitted by a vector to humans, and via sexual transmission such as the Zika
virus (ZIKV) (Padmanabhan, Seshaiyer, & Castillo-Chavez, 2017). Similarly in the study
of heterogeneous gangs considered in this work the interaction between sub-populations
or mixing is of great importance. In the gang model an individual may be ‘infected’ by
becoming recruited into the gang by interaction with an adult or youth. Therefore, param-
eters that control the level of activity and interactions among heterogeneous groups will
significantly affect the gang formation. In the next section, we introduce the mathematical
model.

2. Mathematical models andmethods

In this section, wewill describe the formulation ofmodels with two sub-populations, youth
and adults, within a community with no previous drug-dealing activity. We define the
‘Youth’ population as vulnerable individuals who are children or adolescents 17 years old
or younger when gang recruitment initiated, and are considered from the onset as poten-
tially loyal recruits. This group functions as a ‘circle of trust’ and continues to be identified
as ‘youth’ through time. Individuals eighteen and older at gang formation are in the adult
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group, and also are considered trustworthy as potential recruits from onset. Drug-related
gangs considered in this work are organized crime groups that may have more than 100
members that are recruiting during their criminal activity in all roles, including cover-up
and support gang activities. We will assume that the youth sub-population makes contact
at a higher rate than adults in the developed model for the spread of gangs.

The Susceptible-Gang-Removed (SGR) model accounts for gang members that con-
tinue to recruit susceptible individuals unless they are incarcerated (removed), or leave
criminal activity via interventions returning to the susceptible group. Although gang
recruitment within correctional facilities is acknowledged, in this model recruitment
occurs only from a particular susceptible community where a new drug hot-spot will begin
illegal activities. After completing their detention period individuals may go back to crimi-
nal activity (recidivism) or, by rehabilitation, go back to the susceptible group.We consider
the youth and adult sub-populations of constant sizesNy andNA respectively, each divided
into Susceptible (S: potential to be recruited to a gang), infectious (G: gang members) and
removed (R: gangmembers who are caught, serve a detention sentence, or are permanently
removed such as life-in-prison or death). Subscripts serve to identify the respective sub-
population. We will assume that the group y members make a1 contacts in unit time and
groupAmembersmake a2 contacts in unit time.Wewill nowdefine fraction of interactions
made between the two sub-populations as follows:

βyy youth member with another youth member
βAA adult member with another adult member
βyA youth member with an adult member
βAy adult member with a youth member

Note that,

βyy + βyA = βAy + βAA = 1.

Let us define the mean infectious period that in youth population is 1/αy and in adult
population is 1/αA. Then, we will assume that gang members from both classes Gy and
GA may be removed (death or prison) with a removal rate of αy and αG respectively. Let
1/ρy and 1/ρA be the average length of the jail sentence divided by the percentage of living
removed individuals that are serving a non-life in prison sentence, youth or adult group
respectively. The proportion of prisoners moving back to becoming a gang member after
release is defined as (1 − fy) = f̄y and (1 − fA) = ¯fA for youth and adults respectively. Thus
f̄ denotes the recidivism rate while fy and fA denote the rehabilitation rate for the respec-
tive sub-population. Hence in our model, we will assume that a fraction f̄y of the released
population may relapse to the class of youth Gang members Gy and fy may return to the
susceptible youths Sy. Similarly, we will assume that a fraction ¯fA of released adults may
relapse to the class of adult Gang membersGA and the remaining fA may return to the sus-
ceptible adults SA. Finally, we will also assume that it is possible to intervene at the infected
stage (when part of a gang) for both youth and adults with the intervention parameter φ

(φy for youth and φA for adults) and sway youth and adults back into the respective Sus-
ceptible classes. For example, such intervention may involve education and counselling.
Figure 1 summarizes the interaction between adults and youth described.
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Figure 1. Gang model compartmental diagram.

With these assumptions and notations, our governing system of differential equations
describing the spread of gangs for youth and adults may be given as

Youth and Adult Population Equations

dSy
dt

= −
[
βyya1

(
SyGy

Ny

)
+ βyAa1

(
SyGA

NA

)]
+ fyρyRy + φyGy, (1)

dGy

dt
= βyya1

(
SyGy

Ny

)
+ βyAa1

(
SyGA

NA

)
+ f̄yρyRy − φyGy − αyGy, (2)

dRy
dt

= αyGy − ρyRy, (3)

dSA
dt

= −
[
βAAa2

(
SAGA

NA

)
+ βAya2

(
SAGy

Ny

)]
+ fAρARA + φAGA, (4)

dGA

dt
= βAAa2

(
SAGA

NA

)
+ βAya2

(
SAGy

Ny

)
+ ¯fAρARA − φAGA − αAGA, (5)

dRA
dt

= αAGA − ρARA. (6)

3. Mathematical analysis

In the infectious diseases literature, the basic reproduction numberR0 denotes the number
of secondary infections generated by an infected human when the population being con-
sidered is composed of primarily susceptible humans. Here one may analogously consider
R0 to represent the number of new gang recruits that occurs when one current youth (or
adult) gang member enters the population of a wholly susceptible youth (or adult) pop-
ulation. R0 therefore determines whether there is a continued increase in the number of
youth and adult gang members or not.
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In this section, we derive the basic reproduction number R0 for our mathematical
model (1)–(6) using theNext Generation Matrix approach (Driessche &Watmough, 2002)
which is described in the theorem next.

Theorem 3.1: The basic reproduction numberR0 is given by

R0 =
(
1
2

)[(
RAA0 + Ryy0

)
+
√(

Ryy0 − RAA0
)2 + 4RyA0 RAy0

]
, (7)

where

RAA0 = βAAa2
(φA + αA)

,

Ryy0 = βyya1
(φy + αy)

,

RyA0 = βyAa1
(φy + αy)

,

RAy0 = βAya2
(φA + αA)

.

Proof:

F =
{
βyya1Gy + βyAa1GA

Ny

NA
,βAAa2GA + βAya2Gy

NA

Ny

}
, (8)

V = {(φy + αy)Gy, (φA + αA)GA}. (9)

Next, we compute the Jacobian F from F given by

F =

⎛
⎜⎜⎜⎝

βyya1 βyAa1
Ny

NA

βAya2
NA

Ny
βAAa2

⎞
⎟⎟⎟⎠

and the Jacobian V from V given by

V =
⎛
⎝φy + αy 0

0 φA + αA

⎞
⎠ .

Using matrices F and V one can then compute the Next Generation Matrix FV−1.
Substituting ty = φy + αy and tA = φA + αA for simplicity, thismatrix can be calculated

to be

FV−1 =

⎛
⎜⎜⎝

βyya1
ty

βyAa1Ny

NAtA
βAya2NA

Nyty
βAAa2
tA

⎞
⎟⎟⎠ .

Note that (i, j) entry of the Next Generation Matrix FV−1 is the expected number of
secondary infections in compartment i produced by individuals initially in compartment j
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assuming that the environment seen by the individual remains homogeneous for the dura-
tion of its infection. Also, matrix FV−1 is non-negative and therefore has a non-negative
eigenvalue. The basic reproduction number can then be computed as R0 = ρ(FV−1)

which is the spectral radius of the matrix. This eigenvalue is associated with a non-
negative eigenvector which represent the distribution of infected individuals that produces
the greatest number R0 of secondary infections per generation. In order to calculate the
eigenvalues of FV−1, we consider the characteristic equation

det(FV−1 − λI) = 0,

where λ denotes the eigenvalues of the matrix and I represents the Identity matrix. This
can be simplified to yield ∣∣∣∣∣∣∣∣

βyya1
ty

− λ
βyAa1Ny

NAtA
βAya2NA

Nyty
βAAa2
tA

− λ

∣∣∣∣∣∣∣∣
= 0.

The characteristic polynomial therefore is the following quadratic equation given by

λ2 − λ

(
βAAa2
tA

+ βyya1
ty

)
+ (

βyyβAA − βyAβAy
) (a1a2

tAty

)
= 0.

The basic reproduction numberR0 corresponds to the dominant eigenvalue given by the
root of the quadratic equation:

R0 =
(
1
2

)⎡⎣(βAAa2
tA

+ βyya1
ty

)
+
√(

βyya1
ty

− βAAa2
tA

)2
+ 4

(
βyAa2
tA

βAya1
ty

)⎤⎦ .

Substituting back in φy + αy and φA + αA for ty and tA respectively proves the result. �

3.1. Heterogeneousmixing

In order to obtain a more useful expression forR0, it is necessary to make some assump-
tions about the nature of the mixing between the groups using structured mixing (Simon
& Jacquez, 1992). The mixing is determined by two quantities βyA (infection rate as youth
interacts with adults) βAy (infection rate as adult interacts with youth) since βyy = 1 − βyA
and βAA = 1 − βAy. Interactions between youth and adults in a gang are described as pro-
portionate, preferred and like-with-like mixing (Brauer, 2008; Choe & Lee, 2015). These
describe a progression from the probability of youth and adults interacting randomly,
to increasingly homogeneous interactions where individuals prefer contacts within their
age group. Proportionate mixing functions define the probability of sub-populations ran-
domly interacting with each other. Preferredmixing identifies a fraction of the interactions
that will only occur between the same age group denoted as πy for youth and πA adults.
The remaining activity (1 − πy) and (1 − πA) will be proportionate. Finally like-with-like
mixing refers to interaction exclusively within the same sub-population. In this restricted
contact, youth interact exclusively with youth, and consequently adults only contact adults.
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All three mixing types can be obtained from the following formulation by choosing the
appropriate value for πi ∈ [0, 1], i ∈ {y,A}

βii = πi + (1 − πi)βi,

βij = (1 − πi)βj,

βi = (1 − πi)aiNi

(1 − πy)a1Ny + (1 − πA)a2NA
, (πy,πA) �= (1, 1).

For proportionatemixing of sub-population i, letπi = 0. Preferredmixing can be obtained
taking 0 < πi < 1. For like-with-like mixing take only one sub-population i to be πi = 1.
This implies like-with-like mixing for population j because for all πj �= 1, βi = 0, βj = 1
and thereforeβj,i = 0,βj,j = 1. The following corollaries follow from themainTheorem3.1
forR0.

Corollary 3.2: If adults or youth interact in like-with-like mixing, then

R0 =
⎧⎨
⎩
Ryy0 , Ryy0 ≥ RAA0 ,

RAA0 , Ryy0 < RAA0 .

Proof: For this mixing we have πi = 1, πj �= 1. Note that RAy0 = RyA0 = 0 in (7), and there-
fore by substituting in the R0 formulation from Theorem 1, we get the simple form
R0 = Ryy0 + RAA0 + |Ryy0 − RAA0 |. �

Corollary 3.2 translates to the notion that when sub-populations interact homoge-
neously the group with the largest recruiting activity should be the focus of intervention.
Treatment of this sub-population that include either decreasing their activity or increasing
detention and intervention parameters α and φ will thwart the gang spread.

Corollary 3.3: If adults and youth both interact in proportionate mixing, thenR0 = Ryy0 +
RAA0 .

Proof: For proportionate mixing we have πi = 0. Therefore, βAA = βyA = βA, and βAy =
βyy = βy. Note that R

Ay
0 RyA0 = Ryy0 RAA0 in (7). Then the discriminant

(Ryy0 − RAA0 )2 + 4RyA0 RAy0

reduces to

(Ryy0 + RAA0 )2.

The result is obtained by taking the square root and substituting in R0 from Theorem 1.
�

From Corollary 3.3, we see that when youth and adults interact with the opposite
sub-population, any improvement in the removal parameters (ti) or decrease in activity
parameters (ai) will reduce the reproduction number.
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A result forR0 that is independent of the mixing patterns is presented in Corollary 3.4.

Corollary 3.4: R0 = ai/(φi + αi), for any i ∈ {y,A}, if βyA = βAy, and a2/(φA + αA) =
a1/(φy + αy).

Proof: Denote βyA = βAy = β̄ and a2/(φA + αA) = a1/(φy + αy) = K. Note that βyy =
1 − βyA = 1 − βAy = βAA, and let βAA = βyy = β . Then RAA0 = Ryy0 = Kβ , and RyA0 =
RAy0 = Kβ̄ . Therefore, by substituting in (7) fromTheorem 1:R0 = 1

2 [2Kβ +
√
4K2β̄2] =

K(β + β̄) = K. �

3.2. Homogeneous population stability analysis

In this section, we present stability analysis of the interaction pattern within one of the
sub-populations corresponding to like-with-like mixing. The initial conditions chosen for
the simulation represent the arrival of an adult drug dealer into a susceptible community
where there is no previous gang activity. In this case G0

A = 1, G0
y = 0, S0A = NA, S0y = Ny,

R0y = R0A = 0. In the youth sub-population, like-with-like interaction will not produce a
gang. We will then focus on stability analysis of the adult gang whenR0 > 1.

The constant population assumption gives SA = NA − GA − RA. For simplicity of nota-
tion, we will assume that all variables and parameters refer to the adult sub-population and
will not further use theA subscript in the equations. Also, note thatβAA = 1,βyA = βAy =
0. The new simplified equations obtained from (5) and (6) are

dG
dt

= a2
(
N − G − R

N

)
G + f̄ρR − (φ + α)G, (10)

dR
dt

= αG − ρR. (11)

The nullcline equations obtained from (10) and (11) are

R = −a2G2 + (a2 − (φ + α))NG
a2G − f̄ρN

, (12)

R = α

ρ
G. (13)

Solving (12)–(13) we obtain the gang-free trivial equilibrium, and the endemic equilibrium
point defined as

G∗ = ρ
N(a2 − φ − α(1 − f̄ ))

a2(ρ + α)
, (14)

R∗ = α
N(a2 − φ − α(1 − f̄ ))

a2(ρ + α)
. (15)

We can linearize close to the equilibrium point and find the Jacobian of (10) and (11)

J =
(−a2

N
(R + 2G) − (φ + α) + a2

−a2
N

G + f̄ρ
α −ρ

)
. (16)



LETTERS IN BIOMATHEMATICS 9

Figure 2. Orbit and endemic stable spiral equilibrium node in phase plane with intersecting nullclines.

The eigenvalues at equilibrium points G∗,R∗ were obtained for the constant parameters
P = a2 = 5,N = 300,α = 1,φ = 0.8, ρ = 0.1, f̄ = 0 in ourmodel. The trivial (gang-free)
equilibrium is a saddle point with λ1 ≈ 3.22, λ2 ≈ −0.52. The endemic equilibrium (G∗ ≈
17.45,R∗ ≈ 174.55) is an asymptotically stable spiral node with λ = −0.195 ± 0.531i. The
phase plane portrait in Figure 2 shows the solution field in the G, R plane, nullclines, the
orbit at our initial condition G0 = 1, R0 = 0, and the computed equilibrium.

The following is a result about the stability of the gang-free equilibrium for our model
when parameters are given such thatR0 > 1.

Theorem 3.5: The gang-free equilibrium for like-with-like mixing, is an unstable saddle
point if a2 − φ > αf , and a stable node otherwise.

Proof: In (16) we substitute G = R = 0. The simple matrix will have characteristic poly-
nomial equation

λ2 + λ(ρ + φ + α − a2) + ρ(φ + α(1 − f̄ ) − a2) = 0.

We denote t = φ + α. The two solutions of the quadratic equation are obtained from

λ2 = 1
2
(−(ρ + t − a2) ±

√
(ρ + (t − a2))2 − 4(ρ(t − a2)) + 4αf̄ρ).
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This simplifies to

λ2 = 1
2
(−(ρ + t − a2) ±

√
(ρ − (t − a2))2 + 4αf̄ρ).

All parameters are positive, and solutions are real. Therefore, the solution to this quadratic
equation renders a negative eigenvalue λ1 by subtraction and a positive eigenvalue when
(ρ + (t − a2)) < (ρ − (t − a2))2 + 4αf̄ρ. This reduces to (t − a2) < αf̄ . Finally, take
t = φ + αand 1 − f̄ = f , to obtain the result. When the inequality is not met, then we
obtain either two negative or one negative and a zero eigenvalue. In this instance the
gang-free equilibrium is stable. �

First of all, Theorem 3.5 says that as long as the activity of gang members minus the
intervention parameter is larger than the product of the incarceration and rehabilitation
parameter, the gang will spread to the community. Secondly, we observe in the proof, that
the inequality (t − a2) < αf̄ will be satisfied in our numerical simulations when R0 > 1
because the activity parameter is larger than the combined incarceration and social inter-
vention ratios, i.e. a2 > φ + α = t. Therefore, the gang-free equilibrium is unstable when
R0 > 1 under the initial conditions in our simulation.

Numerical results verify the stability and give us greater insight on the role of mixing
patterns, parameters and the reproduction number.

4. Numerical results

The SGR gang model for youth and adult sub-populations was solved numerically for all
three different mixing patterns. The floating parameters values have been obtained from
a questionnaire handed to two ex-gang members and a former law enforcement agent.
Therefore, the parameters are not obtained from published data, but only conform to the
experience of our consultants. In Table 1, the parameters used for simulation purposes are
summarized.

Initial conditions were chosen with no youth gang members, and one adult gang mem-
ber entering a community with a large population of susceptible individuals such as
housing projects in densely populated urban areas. The following graphs in Figures 3–5
show the results for different mixing patterns.

In all cases, we observe a non-zero endemic equilibrium. This can be interpreted as
the continuous presence of gang activity in an established drug hot-spot. In Figure 3, the
proportionatemixing pattern shows that approximately 78%of the youth population enters
the gang compared to 53% of adults. In Figure 4, the preferred mixing gives a maximum of
79% of recruited youth and 49% of adults. The like-with-like mixing in Figure 5 is logically
best under the initial condition that no youth has been involved in criminal activities in the
past. It is then the best-case scenario that no youth will join the gang if they are protected
from contact with adult gang members. In this case, a maximum of 38% of adults will be

Table 1. Parameters used in simulations.

Ny NA a1 a2 ρy ρA φy φA αy αA fy fA

250 300 15 5 0.1 0.25 0.1 0.8 1 1 0.4 0.5
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Figure 3. Proportionate mixing: random interaction among groups with higher gang recruitment in
youth group.

Figure 4. Preferred mixing with 50% interaction within the homogeneous group shows a decrease in
adult gang formation compared to proportionate mixing.

Figure 5. Like-with-like mixing shows zero-gang in youth and lowest adult gang recruitment.
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Table 2. Changes in R0 with π .

πA 0.2 0.4 0.6 0.8 0.999
R0 2.41 2.46 2.52 2.63 2.78

recruited. The equilibrium point in Figure 5 matches the asymptotically stable spiral node
obtained in the like-with-like stability analysis in Figure 2.

We have conducted numerous simulations to test what is the most favourable mixing
pattern for gang formation. To visualize the sensitivity of the model to the differences in
mixing interactions among the groups, we increase the π parameter of preferred mixing
in our simulations. A mixing pattern is considered ‘ favourable’ for the development of a
gang if the simulation results show a greater number of gang membership, and this peak is
attained in a shorter time period. The numerical results have been instrumental in observ-
ing that, under our initial conditions and parameters, a largerR0 is not a good predictor of
a bigger gang when modifying the sub-population interactions by changing the πi param-
eters. Numerical results show that the largest ai activity parameter determines the mixing
pattern that favours gang formation because adult and youth gangs benefit from the inter-
action with the most active sub-population. This suggests that ai is a parameter with high
sensitivity in our model. Details of the numerical simulations are discussed in the next
paragraph.

In all simulations, the R0 increased as the πA value increased from proportional
(πA = 0) to like-with-like mixing (πA = 1) as seen in Table 1. Interestingly, it is not the
case that gang formation favours like-with-like mixing, as suggested by an increase inR0.
As before, we assume that an adult gangster enters a susceptible community with no pre-
vious criminal gang activities. The corresponding initial conditions for this simulation has
one adult gang member (G0

A = 1) and zero in the youth gang compartment (G0
y = 0). We

assume also that the youth population is much more active contacting others. In Figure 6,
we observe a contrast in the behaviour of the adult and youth gangs when πi increases in
preferredmixing. TheR0 steadily increases withπA, but the development of the adult gang
slows down and decreases in size, opposite to the youth gang spread. Therefore, gang for-
mation for adults favours proportional mixing, smaller πA, rather than like-with-like. On
the other hand, the youth gang favours interaction within its own group, higher πy. The
exception is the limit case when πy = 1, corresponding to like-with-like mixing, with zero
youth gang members because of the initial condition G0

y = 0. We conclude that the largest
activity parameter value ai under the initial conditions, determines the mixing pattern πi
that favours gang spread of each population by increasing the interaction with the most
active group. Therefore, an increasingR0 is not a sufficient indicator to determine the size
of the gang. This result is in agreement with conclusions from Brauer (2008) that in mod-
els with heterogeneous mixing, the reproduction number is not sufficient to determine the
size of the epidemic.

Drug trafficking data of gangs under investigation has not been available, and official
data of past criminal activity that include minors is hard to obtain or incomplete for our
purposes. Therefore, at this point, random noise was introduced to numerical results in
order to create artificial experimental gang data. A parameter estimation algorithm has
been tested for the youth contact parameter a1, because themodel exhibits large sensitivity
to a1 changes. A Nealder–Mead algorithm minimized the error successfully in Figure 7
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Figure 6. Opposite behaviour in youth vs. adult gangs as mixing becomes increasing homogeneous.

Figure 7. Parameter a1 modifiedwith X1 = Noise in simulation, X2 = a∗
1/a1, where a

∗
1 is the parameter

optimization result.

showing that the ratio between the estimated parameter and the actual parameter is close
to one even when the introduced noise is of the order of 102.

To adjust our simulation to the target size of an illegal-drug gang in a large susceptible
housing project in themetropolitan area of San Juan, wemodified the activity parameters ai
and kept all other parameter constant. Results of this simulation are presented in Figure 8.
This simulates the spread of a gang in a large susceptible population produced by introduc-
ing an adult gangster with no previous contacts in the neighbourhood. The results suggest
that in order to develop a large gang of more than 100 youth and adults, a newcomer adult
gangster will spend approximately three years. The simulation shows furthermore that the
model has the capacity to produce insight for law enforcement by customizing the param-
eters such as ai to a targeted criminal activity data. These results will be confirmed in the
Sensitivity analysis section.
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Figure 8. Optimizing ai parameter results to modify the size of a gang.

5. Sensitivity analysis

Numerical results showed sensitivity of the model to parameters π , a1, in contrast to the
information given by an increasedR0 to measure gang spread. This motivated a forward
sensitivity analysis of themodel for preferredmixing that allows themodification of πy,πA
parameter observed in Figure 6. The sensitivity analysis of the preferred mixing model for
16 parameters is developed by computing the normalized forward sensitivity index, defined
as

ϒu
p := ∂u

∂p
× p

u
,

for variable u and parameter p (Chitnis, Hyman, & Cushing, 2008). The indepen-
dent variables of the model are denoted as Gy = x1, Ry = x2, GA = x3, RA = x4, with
Sy = Ny − Gy − Ry and SA = NA − GA − RA. Therefore, the equations for this section
simplify to

dx1
dt

= a1(Ny − x1 − x2)
[(

βyyx1
Ny

)
+
(

βyAx3
NA

)]
+ f̄yρyx2 − x1(φy + αy), (17)

dx2
dt

= αyx1 − ρyx2, (18)

dx3
dt

= a2(NA − x3 − x4)
[(

βAAx3
NA

)
+
(

βAyx1
Ny

)]
+ ¯fAρAx4 − x3(φA + αA), (19)

dx4
dt

= αAx3 − ρAx4. (20)

We disregard dependent parameters: βyA = 1 − βyy, βAy = 1 − βAA, and note that
βyy,βAA are functions of πy,πA, Ny,NA, a1, a2, for calculation of total derivatives. The
16 parameters included in this study are P= [βyy,πy, a1, fy, ρy,φy,αy,Ny, βAA,πA, a2, fA,
ρA,φA,αA,NA].
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Table 3. Model parameter values for the endemic equilibrium solution used as baseline.

βyy πy a1 fy ρy φy αy Ny
0.88 0.5 20 0.1 0.4 0.6 1 250

βAA πA a2 fA ρA φA αA NA
0.62 0.5 5 1 0.1 0.8 1 300

Table 4. Sensitivity indices for variables to all parameters at the endemic equi-
librium, using parameter values in Table 3 corresponding to the numerical
endemic equilibrium solution.

Gy Ry GA RA

βyy 0.029 0.030 0.004 0.004
πy 0.001 0.001 −0.023 −0.023
a1 0.044 0.045 0.029 0.029
fy −0.006 −0.006 −0.001 −0.001
ρy 0.709 −0.285 0.096 0.095
φy −0.034 −0.034 −0.005 −0.005
αy −0.720 0.282 −0.098 −0.096
Ny 0.999 1.007 0.023 0.022
βAA 0.000 0.000 −0.160 −0.157
πA 0.003 0.003 −0.077 −0.075
a2 −0.003 −0.003 0.171 0.168
fA 0.000 0.000 −0.106 −0.105
ρA 0.001 0.001 0.805 −0.209
φA 0.000 0.000 −0.084 −0.082
αA −0.001 −0.001 −0.895 0.103
NA −0.003 −0.003 0.997 0.979

Denoting the right-hand side of Equations (17)–(20) as g1–g4, we find the full derivative
at equilibrium of equation k with respect to parameter j:

dgk
dpj

=
4∑

i=1

(
∂gk
∂xi

∂xi
∂pj

)
+

16∑
l=1

(
∂gk
∂pl

∂pl
∂pj

)
= 0,

for 1 ≤ k ≤ 4 and 1 ≤ j ≤ 16. Therefore, we obtain for the jth parameter a system of four
equations of the form:

4∑
i=1

∂gk
∂xi

∂xi
∂pj

= −
16∑
l=1

∂gk
∂pl

∂pl
∂pj

,

and solve this system defined by the 4 by 4 Jacobian matrix A = [ak,i], 1 ≤ k, i ≤ 4, with
ak,i = ∂gk/∂xi, for the sensitivity vector of each variable to the parameter pj, given by
[∂x1/∂pj, . . . , ∂x4/∂pj]T.

We computed the normalized sensitivity index of the preferred mixing model to all 16
parameters, for the numerical endemic equilibrium x∗ = [69, 171, 22, 224] obtained from
our numerical solution with its corresponding parameter values P∗ in Table 3 that are used
as baseline. The results of the sensitivity index for each variable Gy,Ry,GA,RA presented
in Table 4.

The sensitivity analysis results are very enlightening. We first observe that the direc-
tion given by the sign of each sensitivity index seems to correctly describe an increase or



16 M. RIVERA-CASTRO ET AL.

decrease in the gang (Gi) and removed (Ri) variables. For the Gi, we see that the rehabil-
itation (fi), intervention (φi), and removal (αi) rates are negative, as expected, decreasing
the number of gang members in both populations. An increase in the number of sus-
ceptible individuals (Ni) always produces an increase in its sub-population. Nonetheless,
an interesting change of sign occurs when NA increases. It might be expected that all
variables increase with the susceptible population, but this is not the case for the youth
variables as NA increase. A higher NA produce an increase in the probability of random
interactions of youth with the less active adult group, decreasing Gy,Ry. We ran again the
sensitivity analysis code changing the preferred mixing from πy = 0.5 to πy = 0.9 to test
this hypothesis. The sensitivity indices of youth variables to the NA parameter reduced
to zero. This shows that an increase of NA decreases the youth population when a larger
proportion of interactions are random (πy = 0.5), but have negligible effects if the youth
prefer to interact more within its own group (πy = 0.9). This is a consequence of the
effect that the larger activity parameter a2 = 20 has on the spread of the gang. Therefore,
a higher probability of interacting with youth will increase the spread of the gang, while
otherwise, a higher probability of interaction with adults decrease the active youth group
variables.

Regarding themagnitude of the parameters, the highest positive index is the population
parameter (Ni) for its corresponding sub-population. The removal rate (αi) is the parame-
ter that decreasesmost of the corresponding variables. The release parameter (ρy) is the one
that reduces the most the number of removed individuals, and, in the opposite direction,
incarceration/removal rate (αi) contributes themost to the number of removed individuals
in both populations. The intervention rate (φy) has a higher impact in reducing theGy than
the rehabilitation rate (fy), but in the adult sub-population it is exactly the opposite. This
responds to the larger fA = 1 > fy = 0.1. This was also verified by changing this parameter
to fA = 0.1 and the new sensitivity indices of both GA and RA to fA (−0.021) are smaller
in magnitude to those for φA (−0.167). The influence of the higher activity youth sub-
population is also observed in the intervention (φy) and rehabilitation (fy) parameters on
the adult variables. The youth group decrease the adult variables, GA and consequently
RA, to an expected lesser extent. The influence of the corresponding adult parameters
on the youth variables is negligible. This is understood again in light of the lower activ-
ity parameter of adults (a2 = 5), and therefore a smaller influence on the spread of
the gang.

The sensitivity of the model to the activity parameters ai, and interaction πi,βii can
be understood in the same light as the previous discussion. A higher youth interaction
in preferred mixing driven by the (piy) parameter benefits the spread of the youth gang,
but not the adult. This is also confirmed with the sensitivity to πA. The sensitivity indices
for the βii parameters are also a consequence of the most large activity of the youth sub-
population. Here, the βyy parameter changes will increase all variables, as this produces a
larger interaction among themost active youth sub-population. The opposite is true for the
βAA. An increase of the proportion of adult-with-adult interaction will decrease the spread
of the adult gang. Again the increase of the activity of the youth group (a1) increases all
variables. Nonetheless, an increase in the adult activity (a2) improves the adult variables
but will slightly decrease the youth variables. An argument similar to the NA parameter
sensitivities explains how an increased probability of interaction with less active GA will
decrease the youth βyy parameter and variables.
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6. Conclusion

We have developed a model with six variables for the spread of a youth gang in a het-
erogeneous population by age groups. Three mixing patterns have been used to govern
interaction between the groups. Some parameters have been introduced that enable the
study of the effects of social interventions to persuade criminals to leave the gang, recidi-
vism vs. rehabilitation, detention/incarceration, activity and population for youth and
adults. These parameters have been approximated from census data, ex-gang members
questionnaire, and the collaboration of a former law-enforcement agent.Wehave presented
formulations for the reproduction number, stability analysis for homogeneous mixing,
numerical results, and sensitivity analysis for themodel. A parameter estimation algorithm
shows that this model can be tailored to law enforcement data, producing insight into the
dynamics of gang spread among youth, a complex social problem that is deforming the
vulnerable kids in PR and other nations.

The mathematical analysis of the model presents the formulation for the reproduction
number and its simplified forms for different mixing patterns that include like-with-like
and proportionate mixing. An analysis of the reproduction number R0 and sensitivity
analysis showed that larger educational and counselling intervention parameter will also
decrease the intensity of gang recruitment. For the homogeneous like-with-likemixing, we
have presented formulas to obtain the endemic equilibrium, and showed the conditions for
the gang-free equilibrium to be an unstable saddle point in the like-with-like mixing when
R0 > 1. The phase plane for the initial conditions and parameters of the simulation have
shown that the endemic equilibrium is an asymptotically stable spiral node. This result has
been confirmed in the numerical simulation results.

The numerical simulations study the formation of a large gang in a susceptible popu-
lation of youth and adults initiated by a recruiting adult with no previous connections in
the neighbourhood. Numerical results for R0 > 1 shown in Figure 5 confirmed a non-
zero endemic equilibrium that is consistent with the phase plane results obtained for the
like-with-like mixing. proportionate and preferred mixing in Figures 3 and 4 also show
and endemic equilibrium that is consistent with the existence of drug hot-spots. These
places where drug-related gang activities have been initiated continue to be drug deal-
ing location in time because different gangs will takeover the illegal business at the spot.
After a previous gang in the hot-spot has been dismantled, the successor gang some-
times chooses to keep the same name. A parameter estimation algorithm for the activity
parameter ai has been developed to best fit the model to a scenario of a law-enforcement
investigation. The sensitivity of the model to the activity parameter has given insight on
the time needed to develop a large gang under the initial condition of a single recruiting
adult. This parameter is also the prime predictor of the most favourable mixing pattern for
youth and adults gang formation showing that an increasing R0 is not sufficient for this
purpose.

The sensitivity analysis showed that the sub-population with the largest activity param-
eter will drive the spread of the gang. Therefore, interventions, rehabilitation, and removal
efforts should be focused on this group in order to decrease the spread of a gang in a sus-
ceptible community. It also shows the size of the susceptible communities will promote the
spread of a gang. Considering the above, some helpful strategies might include the build-
ing of smaller housing projects. Also, a removal strategy that promotes moving susceptible
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families to different communities might prove to be helpful to deter the local spread of a
gang that is considered in this model.

An idealistic conclusion can be supported by the numerical results of the simulations
that encourage the involvement of concerned citizens and youth organizations. If young
kids with no previous gang involvement do not interact with gang recruiting adults, then
simultaneously the adult gangwill not prosper quickly and kids will not be involved in drug
trafficking. The like-with-likemixing pattern shows that the best course of action to curtail
the spread of a gang is prevention. Therefore, investments in programmes that develop an
interest in arts, music and sports, recreation and other after-school activities continue to
be the best resources to rescue vulnerable young people from the long-term consequences
of crime.
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