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Abstract

Omnivory is defined as feeding on more than one trophic level and is ubiquitous
in most natural communities. We investigate a three-species nonlinear response
omnivory model incorporating stage structure in the top predator. The model
consists of four coupled ordinary differential equations involving fourteen param-
eters. As estimates from natural systems the parameters are subject to natural
intrinsic variability and measurement error. To determine how infinitesimally
small changes in the parameters affect the model solution, we derive sensitivity
equations and numerically solve for the sensitivities. Our performance measure
of the sensitivities shows that the mortality and search rates are the most sensi-
tive parameters with conversion efficiencies at intermediate values. The resource
enrichment rates and handling times are the least sensitive.

Keywords: sensitivity analysis, omnivory model, stage structure

1 Introduction

Omnivory is defined as the act of feeding on resources at more than one trophic level [1]. A
three-species subset of omnivory involving predation and competition is known as intraguild
predation [2]. In this paper, we investigate a model incorporating nonlinear Holling Type II
functional and numerical responses as well as stage structure in the top predator. We
approximate a natural omnivory system with a deterministic model of differential equations
so there is variability in our model inputs. Similarly, the model parameters are limited by
measurement error. These errors affect the outcomes or solutions to our model.

We use sensitivity analysis to determine how infinitesimally small changes in model
parameter values affect the population densities. There are many variations and applications
of sensitivity analysis (see [3, 4, 5, 6] for example). Our method will help us determine which
parameter estimates are sufficiently precise for our model to give reliable predictions based
upon the dynamics of our model. Also, we will be able to prioritize the parameters to help
biologists determine which parameter values should be more closely estimated from empirical
data. This in turn should dictate an increase in precision and accuracy with which biologists
collect data for specific parameter estimates. Vance et al. [7, 8] used sensitivity analysis to
study the parameters of a linear response omnivory model and a nonlinear response omnivory
model, respectively.
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Figure 1: Illustration of Three-Species Omnivory with Predator Stage Structure. Solid
arrows indicate that one species (base of arrow) is eaten by another species (point). The
dashed arrow indicates a growth transition.

2 Stage Structured Omnivory Model

We investigate a model similar to the model given in [9] which consists of a coupled system of
ordinary differential equations incorporating nonlinear functional and numerical responses
of the basal resource density, R, and intermediate consumer density, C. Also, our model
incorporates two stages in the top predator species with the juvenile stage denoted by P1 and
the adult stage denoted by P2. Our model assumes that the juvenile predator stage feeds on
the basal resource and adult predator stage feeds on the basal resource and the intermediate
consumer. The intermediate consumer feeds solely on the resource (see Figure 1). The model
given in [9] assumes that, in the absence of consumers and predators, the resource population
grows according to semichemostat dynamics, whereas we assume the resource population
grows logistically to be consistent with previous work conducted by Vance et al. [7, 8].
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= µPP1 −mPP2 (1)
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1 + λRPhRPR

]
+R

[
− λRPP2

1 + λRPhRPR+ λCPhCPC

]
(4)

with initial conditions

P2(0) = c1 > 0, P1(0) = c2 > 0, C(0) = c3 > 0, and R(0) = c4 > 0.

Parameter r is the intrinsic rate of increase of the resource, K is the environmental
carrying capacity of the resource, λij is the search rate of species j for species i, hij is the
time spent by species j handling species i, and eij is the efficiency with which species i is
converted to new offspring of species j. The natural mortality rate for both of the predator
stages is mP , and mC is the natural mortality rate for the consumer. µP is the rate at
which the juvenile predator matures into the adult predator. A summary of the variables
and parameters is given in Table 1.
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Table 1: Definitions of Variables and Parameters
Parameter Definition

R Basal resource density
C Intermediate consumer density
P1 Juvenile top predator density
P2 Adult top predator density
r Resource intrinsic rate of increase
K Environmental carrying capacity of the resource
λRC Search rate of consumer for resource
λRP Search rate of predator for resource
λCP Search rate of predator for consumer
hRC Time spent by consumer handling resource
hRP Time spent by predator handling resource
hCP Time spent by predator handling consumer
eRC Conversion efficiency of resource into consumer
eRP Conversion efficiency of resource into predator
eCP Conversion efficiency of consumer into predator
mC Natural mortality rate of consumer
mP Natural mortality rate for both predator stages
µP Predator maturation rate

3 Sensitivity Analysis

Our model (equations (1), (2), (3), and (4)) can be written in the form

dx1
dt

= F1(x1, x2, x3, x4) (5)

dx2
dt

= F2(x1, x2, x3, x4) (6)

dx3
dt

= F3(x1, x2, x3, x4) (7)

dx4
dt

= F4(x1, x2, x3, x4) (8)

where xj , j = 1, 2, 3, 4 represents the P2, P1, C, and R species densities respectively. We
represent each parameter by αi, i = 1, 2, . . . , 14 and define the sensitivity of state variable
xj with respect to parameter αi as

Sj,i =
∂xj
∂αi

(9)

for j = 1, 2, 3, 4 and i = 1, 2, . . . , 14.
Available theory given in Rossenwasser [5] allows differentiating each equation in the

system above with respect to each of the parameters and interchanging the order of differ-
entiation to derive a linear system of differential equations for the sensitivities

∂

∂t
Sj,i =

4∑
k=1

(
∂Fj
∂xk

Sj,i

)
+
∂Fj
∂αi

. (10)

The above equations are called the sensitivity equations and require that

∂Fj
∂xk

be continuous with respect to independent variable t and state variables xk for all j, k =
1, 2, 3, 4 (see [5]). Differentiation of the initial conditions result in

Sj,i(0) = 0
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for each j = 1, 2, 3, 4 and i = 1, 2, . . . , 14.

Notice that
∂Fj

∂xk
does not depend upon the parameter and thus does not change for each

parameter. However,
∂Fj

∂αi
changes for each parameter. We use the term general sensitivity

equations for the system of linear ordinary differential equations

∂

∂t
Sj,i =

4∑
k=1

(
∂Fj
∂xk

Sj,i

)
(11)

since the terms
∂Fj

∂xk
remain the same for each parameter. We use the term particular part

of the sensitivity equations for the terms

∂Fj
∂αi

(12)

since they change for each parameter. The partial derivatives computed from (12) are given
in Table 2 for each of the fourteen model parameters. Notice that each partial derivative is
continuous with respect to t, P2, P1, C, and R for all positive values.

We define

SP2
= S1,i =

∂P2

∂αi
,

SP1 = S2,i =
∂P1

∂αi
,

SC = S3,i =
∂C

∂αi
,

SR = S4,i =
∂R

∂αi
,

consistent with equation (9). For the sake of space, we will suppress the dependence upon
the independent variable t in the following equations. The general sensitivity equations for
our nonlinear response omnivory model with predator stage structure are

d

dt
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+
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(
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)
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with initial conditions

SP2(0) = 0, SP1(0) = 0, SC(0) = 0, and SR(0) = 0.

The sensitivity equations are formed by adding the corresponding particular part of the
sensitivity equations found in each row and column in Table 2 to the general sensitivity
equations given above.

For each parameter that the original system has, we must solve a system of linear sensi-
tivity equations. The number of differential equations in the state system dictates how many
differential equations there will be in the linear sensitivity system. For our model, we have
fourteen parameters and four variables. Also, although the sensitivity equations are linear,
they are forced by the solution to the state equations. Thus, to compute the sensitivities we
solve one hundred twelve equations in groups of eight (four model and four sensitivity). To
solve the state equations we use the parameter values taken with slight modifications from
Mylius et al. [9] and Persson et al. [10] listed in Table 3. This combination of parameter
values leads to a stable equilibrium solution for the model with all species present.

We numerically integrate the linear sensitivity equations and the nonlinear state equa-
tions using a fourth- and fifth-order adaptive step size algorithm known as ode45 in the
computing software Matlab. This is a Runge-Kutta-Fehlberg method that simultaneously
obtains two solutions per step in order to monitor the accuracy of the solution and adjust
the step size according to user-prescribed tolerances on the error. We use 1 x 10−3 for the
relative error and 1 x 10−6 for the absolute error tolerances with initial condition (1, 1, 2, 3)

T

for the state equations and initial condition (0, 0, 0, 0)
T

for the sensitivity equations.
There are four sensitivities corresponding to the four state variables for each parameter.

So we define the weighted euclidean norm

||Si||(t) =
√
w1(S1,i)2 + w2(S2,i)2 + w3(S3,i)2 + w4(S4,i)2

for each i = 1, 2, . . . , 14 as a performance measure of how small changes in the parame-
ters affect the state variables. Notice that this performance measure is a function of the
parameter and time only. For our calculations we let each weight be equal to one so that
each of the state variables is weighted equally. Unbalanced weighting could be used if a
state variable was considered more important in terms of the performance measure. Also, if
the sensitivities are extremely different in magnitude then a weighted norm provides a way
to ensure that each sensitivity has approximately the same impact upon the performance
measure. In our case, we did not feel that the difference in magnitude of the sensitivities
corresponding to a single parameter was significant and thus chose equal weighting.

4 Results

Based upon the numerical values of the performance measures of the sensitivities over time,
we define three classes of parameters corresponding to their sensitivities: small, medium,
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Table 2: Partial derivatives of the right hand side of original model with respect to the
parameters.

Parameter Partial of F1 Partial of F2

eRP 0 λRPRP2

1+λRPhRPR+λCPhCPC

eCP 0 λCPCP2

1+λRPhRPR+λCPhCPC

eRC 0 0

λRP 0 eRPRP2(1+λCPhCPC)−eCPλCPhRPRCP2

(1+λRPhRPR+λCPhCPC)2

λCP 0 eCPCP2(1+λRPhRPR)−eRPλRPhCPRCP2

(1+λRPhRPR+λCPhCPC)2

λRC 0 0

hRP 0 −λRPRP2(eRPλRPR+eCPλCPC)
(1+λRPhRPR+λCPhCPC)2

hCP 0 − (λCP )CP2(eRPλRPR+eCPλCPC)
(1+λRPhRPR+λCPhCPC)2

hRC 0 0
mP −P2 −P1

mC 0 0
µP P1 −P1

r 0 0
K 0 0

Parameter Partial of F3 Partial of F4

eRP 0 0
eCP 0 0

eRC
λRCRC

1+λRChRCR
0

λRP
λCPhRPRCP2

(1+λRPhRPR+λCPhCPC)2 − RP1

(1+λRPhRPR)2 −
RP2(1+λCPhCPC)

(1+λRPhRPR+λCPhCPC)2

λCP − CP2(1+λRPhRPR)
(1+λRPhRPR+λCPhCPC)2

λRPhCPRCP2

(1+λRPhRPR+λCPhCPC)2

λRC
eRCRC

(1+λRChRCR)2 − RC
(1+λRChRCR)2

hRP
λRPλCPRCP2

(1+λRPhRPR+λCPhCPC)2
(λRP )2R2P1

(1+λRPhRPR)2 + (λRP )2R2P2

(1+λRPhRPR+λCPhCPC)2

hCP
(λCP )2C2P2

(1+λRPhRPR+λCPhCPC)2
λRPλCPRCP2

(1+λRPhRPR+λCPhCPC)2

hRC − eRC(λRC)2R2C
(1+λRChRCR)2

(λRC)2R2C
(1+λRChRCR)2

mP 0 0
mC -C 0
µP 0 0
r 0 R

(
1− R

K

)
K 0 rR2

K2

Table 3: Parameter values and sensitivity ranking
Parameter Value Rank Parameter Value Rank

r 0.3 9 K 4 11
λRC 0.037 4 hRC 3 13
λRP 0.025 3 hRP 4 12
λCP 0.025 2 hCP 4 14
eRC 0.6 10 mC 0.03 5
eRP 0.36 7 mP 0.0275 1
eCP 0.6 8 µP 0.1 6
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Figure 2: Plot of the performance measure for parameters with large sensitivities over time.

Figure 3: Plot of the performance measure for parameters with medium sensitivities over
time.
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Figure 4: Plot of the performance measure for parameters with small sensitivities over time.

and large. Figure 2 depicts the graph of the performance measure of the parameters cor-
responding to large sensitivities, Figure 3 depicts the graph of the performance measure of
the parameters corresponding to medium sensitivities, and Figure 4 depicts the graph of
the performance measure of the parameters corresponding to small sensitivities. Notice the
changing scale on the vertical axes. In the legends of the graphs, the handling times, hij ,
are denoted by Handlingij , the conversion efficiencies, eij , are denoted by Efficiencyij , the
search rates, λij , are denoted by Searchij , the mortality rates, mi, are denoted by Mortalityi,
and the maturation rate, µi, is denoted by Maturationi where i, j are the appropriate P2,
P1, C, or R as given in Table 1. Notice that in all three plots of the performance measures
(Figures 2, 3, 4) the values of the performance measures vary over time but eventually level
to a steady state. This is because the parameter values listed in Table 1 lead to a steady
state solution of the original model with all three species present. For analysis on the pa-
rameter space that leads to all three species present also known as permanent coexistence
for this model see [11].

As shown in Figure 2 the performance measure or the norm of the sensitivities is the
largest for the predator mortality rate with a maximum value of approximately 410 and
steady state value of around 260. This indicates that small changes in the predator mortality
rate cause the largest change in the model solution. So variation in the predator mortality
rate due to measurement error or natural intrinsic variability affects the population densities
to a greater extent than the other parameters. To give an overall ranking of the parameters
we consider the value of the performance measure per parameter at steady state since there
are many oscillations in the performance measures over time until steady state is reached.

The performance measures for the consumer mortality rate and the search rates are quite
similar with maximum values ranging from 80 to 140 and steady state values ranging from 50
to 95. Ranked by steady state performance values, the most sensitive parameters in Figure 2
after the predator mortality rate listed in decreasing order are λCP , λRP , λRC , and mC .
The maximum values for the parameters in Figure 3 range from 5 to 19 with steady state
values ranging from 4 to 13. Ranked by steady state values the medium sensitive parameters
listed in decreasing order are µP , eRP , eCP , r, and eRC . Figure 4 shows the performance
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values for the resource carrying capacity and the handling times. These parameters with
smaller sensitivities listed in decreasing order K, λRP , λRC , and λCP have maximum values
ranging from 0.2 to 1.4 with steady state values ranging from 0.1 to 1.1.

5 Conclusion

The most sensitive parameter is the predator mortality rate. Vance et al. [7, 8] found
the same result for a linear response omnivory model and a nonlinear response omnivory
model respectively. In general, the mortality rates and search rates are the most sensitive.
Conversion efficiencies, the maturation rate and resource enrichment parameters are at
intermediate levels. Handling times are less sensitive with the time spent by the predator
handing the consumer being the least sensitive. A ranking has been provided in Table 3
with a ranking of 1 corresponding to the most sensitive parameter and 14 corresponding to
the least sensitive parameter.

For parameters with larger sensitivities biologists should take extra care in the field or lab
collecting data for that parameter value. Thus biologists should pay closer attention to data
collection for the mortality rates. Since the handling times affect the solutions to the state
equations the least, biologists need not be as accurate in collecting data to estimate those
parameters. This ranking of parameters can contribute significantly to research project
efficiency since most projects have limited funding and confined time frames for completion
of data collection. It should be noted that biologists have no control over the natural intrinsic
variability in the model parameters. Thus to use the model for species density predictions
and management decisions requires a concerted effort to reduce the measurement errors that
can be controlled. This is another important contribution of our sensitivity analysis.

The ranking of the parameters may be affected by the use of a weighted norm perfor-
mance measure since it is a global measure. A relative measure could provide additional
insight into how sensitive the parameters of our three-species nonlinear response omnivory
model with predator state structure are to small changes corresponding to natural intrinsic
variability and measurement error. Also, the sensitivities and rankings depend upon the pa-
rameter values given in Table 3. Thus, significantly different parameter values could change
the rankings.
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